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Abstract— Deformable objects especially large-size de-
formable objects grasping is unappreciated but widespread
in industrial applications (e.g., clothes recycling). While it
encounters several challenges, for example, the existing methods
didn’t take large-size deformable objects into account, no
typical boundary of deformable objects. To solve the challenges,
we proposed a grasp detection framework consisting of a self-
trained object detection network, an instance segmentation
module, and a grasp pose generation pipeline. The experiments
were successfully conducted on the industrial laundry mock-
up with an 88.9% success ratio. The experiments result indi-
cates the effectiveness of the proposed framework on spatial-
constrained large-size deformable objects grasping in clutter.

I. INTRODUCTION

Robotic gripping serves as a cornerstone in industrial
automation, significantly advancing the efficiency of factories
by taking over repetitive and hazardous tasks from human
workers. With the integration of deep learning advance-
ments in image processing and object detection, robots have
showcased remarkable capabilities in handling a variety of
tasks [1]-[4]. However, while the technology for grasping
normal-sized, rigid objects is well-established, the challenge
of handling deformable objects remains an area of active
research and development.

There are several methods considered the deformable
objects grasping. Liu et al [5], [6] conducted stir-fry semi-
deformable objects on a bimanual robot system and further
manipulated deformable object: dough rolling. Hang Yin et al
[7] surveyed more than 100 relevant studies and synthesized
insights from analytical and data-driven methodologies. Is-
abella Huang et al [8] researched the interaction between
deformable objects by physical simulation and created a
data set containing 34 objects, 6800 grasp evaluations, and
1.1M grasp measurement. Han et al [9] proposed a grasping
architecture for rigid grippers based on the transformer,
created a fruit grasping data set, and conducted online
experiments. However, these methods have two limitations:
1) only considered normal-size objects; 2) only considered
table-top setup; 3) didn’t consider the cluttered situation. For
industrial applications like laundry (as shown in Fig. 1.),
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Fig. 1. Robot arm approaching grasp target in the washing machine.
By inputting an RGB-D image, the proposed framework can detect, and
segment the objects and give a reasoning and feasible 6-DoF grasp pose.

whose grasping targets are large-size objects with spatial-
constrained working environments, also be appreciated be-
cause the human labor and working environments are even
worse than the adopted applications like production flow
lines and logistics.

Integrating deep learning-driven perception with robotic
grasping necessitates precise object detection, solid image
processing [10]-[16], instance segmentation [17], and the
generation of suitable 6-DoF (Degrees of Freedom) grasp
poses. Recent studies have incorporated offline object detec-
tion modules and force-analysis-based methods for grasping
objects [18], [19]. These approaches leverage calculations
and force analysis to develop models for grasping target
objects, such as predicting and calculating the stability of
a grasp based on the object’s appearance and geometry.

As a result, the grasping of large-size deformable objects
in industrial applications, which are conducted in spatial-
constrained clutter environments, needs to be calculated
according to the 3D model of target objects and use the
collision checking algorithm to select feasible grasp poses
from the grasp poses data set created from the force-analysis
repetitively. On the other hand, these approaches require a
complete and accurate 3D model of the objects that appear in
the environment, which in practice, is hard to acquire. Thus,
these approaches suffer excessive failure when encountering
novel and deformable objects. Though simulation can accel-
erate the training and generalization, these kinds of object
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Fig. 2. YOLO Family Comparison. Diagram based in [20]

detection systems, which take in the RGB image, require
more effort to narrow the gap between sim and real.

These limitations motivate us to propose a deep learning-
based large-size deformable objects grasp pose estimation
framework which can be used in cluttered situations by
single-shot.

The principal contributions of this paper are outlined
below:

o This paper proposes a grasp pose estimation framework
based on deep learning for large-size deformable objects
in clutter.

This paper trains a neural network based on YOLOVS
for large-size deformable object detection.

This paper proposes a grasp pose estimation module that
can provide reasoning and feasible 6-DoF grasp pose
for large-size deformable object grasping in a spatial-
constrained environment.

This paper verifies the proposed framework in a real
industrial environment and the object detection accuracy
reaches 88.9%.

II. RELATED WORKS
A. YOLOvS Network

YOLOVS is the newest neural network in the YOLO
(You Only Look Once) family used for object detection
tasks and YOLO processes images in a single pass through
a convolutional neural network (CNN). Unlike traditional
object detection algorithms that give region suggestions
and then classify regions individually, the YOLO network
first, separates the input image into a grid and outputs the
predictions of bounding boxes and objects’ classification
from the grid cells. Compared to other YOLO families, their
performance improved not only solely on the accuracy but
also the balance of accuracy and speed. As illustrated in
Fig. 2, this is the results of mAP, several parameters and
FLOPs tested on the COCO Val 2017 data set. The accuracy
and perception speed of YOLOvVS are higher than the other
YOLO family, which is suitable for deployment on industrial
applications.

B. Segment Anything (SAM)

Segment Anything [21] is a deep learning model trained
by Meta researchers. It’s a zero-shot pre-trained instance
segmentation model trained on the SA-1B data set, which
consists of more than 11M diverse images and more than
1.1B segmentation masks. As illustrated in Fig. 3, the
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Segment Anything is compared with other mask tools, and
the confidence intervals for mean mask ratings are 95%.
The human annotators evaluate the quality of SAM’s output
masks are significantly better than the currently most robust
method, RITM (Reviving Iterative Training with Mask Guid-
ance for Interactive Segmentation). Abortively, SAM’s single
mask output module has relatively lower ratings, though still
higher than RITM. SAM’s mean ratings are between 7 and 9,
which corresponds to the qualitative rating standard. These
results suggest that SAM’s pre-trained model has the ability
to segment valid masks from a single point.

C. 6-DoF Grasping Pose Generation of Deformable Objects

CNNs (Convolutional Neural Networks) have achieved
outstanding detection results across various tasks [22]-[25].
Several works have been done on 6-Dof grasp pose gener-
ation via deep learning [26]-[30]. The deformable objects
grasping problem requires an object detection module, like
template matching based on a 2D image and an instance
segmentation module, that perceives the target deformable
object before grasping. Traditional Siamese Networks based
on RGB images are also well-explored in single-shot detec-
tion for robotic grasping tasks. We combined the depth data
and RGB images for object perception.

III. PROBLEM STATEMENT
A. Assumptions

The large-size deformable objects follows the assump-
tions: 1) objects larger than the generalized object datasets
such as: YCB [31], and 2) objects smaller than the industrial
laundry bags.

Our approach following the assumptions: 1) self-designed
needle gripper suction grasping with known geometry pa-
rameters and 2) one RGB-D camera with known intrinsics.

For suction grasping, the sucker gripper (self-designed
needle gripper in our case) approaches along the normal
vector of the surface, which also matches human preference
and ergonomics. Thus we add one more hypothesis: 3) The
normal vector of the grasping surface served as the approach
vector of the suction grasping.

B. Problem Definitions

Camera Status. The camera status can be represented
by c=(T¢,2), in which T represents the extrinsic and 2
represents the intrinsic we know.

Point Clouds. P represents the point clouds we recon-
structed from the depth image.
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Suction Grasps. g=(g1, g=2-..gn ) represents suction grasp
points in 3D space. Each suction grasp can be illustrate as
follows: g;=(s, Z, 1), i=1,2...n, s represents the grasp point
5=(Sg, Sy, S>), which provides the location point of suction
grasping. Normally grasp point s is on the surface of the
point clouds P. Z represents the unit normal vector of grasp
point grasp point s. 7 represents the approaching vector of
the suction needle gripper r=(rg, Ty, 7).

IV. METHODOLOGY

We proposed a 6-DoF target-driven grasp detection frame-
work for spatial-constrained large-size deformable objects
grasping in clutter. Our framework is to 1) Accurately
detect the target object (previously seen or unseen) based
on incomplete visual data. 2) generate the feasible 6-DoF
grasp pose based on the combination of RGB-D data and
point cloud.

A. Framework Overview

As shown in Fig. 4, our grasping detection framework con-
sists of three modules: a large-size object detection module, a
cluttered deformable objects instance segmentation module,
and a spatial-constrained grasp pose generation module. By
giving an RGB-D image input, the RGB image is forwarded
to the large-size object detection module for the classification
and output the bounding box for each object in the image.
At the same time, it will forward to the cluttered deformable
object instance segmentation module for image encoding.
After the bounding boxes are given, the cluttered deformable
object instance segmentation module will segment each
object’s mask according to the bounding box. For grasp
stability estimation, we combine the object classification
confidence thresholds above 0.8 and the maximum mask area
to select the grasping order. Then according to the target
mask, the point cloud P reconstructed from the depth image
is separated into the masked target point cloud P, and the
surrounding obstacles P’, then we find the center of Ps and
search the nearest point from it on the mesh which outputs
the grasp point s. By using the point and the surrounding
20 points of it to formulate a plane, we can use the normal
vector of the plane as the Z axis of the grasp pose which
matches the Z axis of camera frame. and the X, Y axes
are decided by transforming the camera frame to the target
frame. After the transformation matrix 7' is got, it can be
forwarded to do further motion. Our framework can be seen
as the combination of peripheral visual and a foveated visual
of the object.

B. Large-size Object Detection

We adopted the YOLOv8 neural network in our large-
size object detection module and trained it with the data
set created by us, which contained the sole cluttered large-
size deformable objects, wash bags in this case. The module
extracts the features of the input RGB image and classifies
the objects as wash bags. The masked RGB image is output
with bounding boxes’ confidence above 0.8.
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Fig. 4. Object detection neural network training result.

C. Cluttered Deformable Object Instance Segmentation

The pre-trained instance segmentation model Segment
Anything (SAM) [9], is adopted in our cluttered deformable
object instance segmentation module, which is trained on
a hybrid of cluttered rigid and deformable objects data set.
The input RGB image is encoded and forwarded to the image
embedding. combining the bounding boxes output from the
large-size object detection module with the text prompt, we
can get the zero-shot accurate instance segmentation masks
and forward to the next module.

D. Spatial-constrained Grasp Pose Generation

Our grasping module first generates the grasp pose, which
takes in the reconstructed point cloud P and the masked
RGB image, the output mask is decided by the object
classification confidence and grasping area, and the threshold
is confidence above 0.8 with maximum grasping area. The
masked RGB image is then combined with the point cloud
P to get the grasp target point cloud P, and forward to do
the KD-Tree nearest neighbor search from the P; center to
find the point on surface as the grasp point s = (Sz, Sy, 52)
and get translation matrix T as follows:

1 0 0 s,
Ts= |0 1 0 sy 1)
0 0 1 s,

Considering the grasp orientation, we can still use the
KD-Tree search to find the surround points to formulate
the grasping area and use its unit normal vector Z =
(Z%,Zy, Z,) as the grasp orientation’s Z axis, the rotation
angle @ can be decided by the following equation:

L ZxZ
6 = arcsin ——— ()
Z-Z

Unit vector Z’ represents the camera frame’s Z axis, by
finding the rotation angle, we can get the rotation matrix R
by using the Rodrigues’ equation:

0 —Z, Zy,
R =cos0-I+sinf@-| Z, 0 —Zy +(1—c056)~Z~Zt 3)
—Zy  Za 0

And the overall transformation matrix 7" can be decided by:

T=Ts XR “4)
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Fig. 5. Deformable object instance segmentation results.

Fig. 6. Spatial-constained grasp pose generation results.

E. Data Acquisition and Model Training

The entire framework operates under a self-supervised
training paradigm. As we discussed above, the instance
segmentation module is adopted from Segment Anything
(SAM) which is robust and validated on different data sets.
So, the main influence factor of the system is the bounding
box output. We trained the object detection module with 1K
RGB images and 1 classification of different shapes and light
of object with ground truth labels. During the label of the
data set, the markup of each image is performed and the
boundary of each bag is highlighted. The data set was divided
into the train, valid and test samples in the ratio of 7:2:1.
Since the data set is small, to avoid over-fitting, we tuned
the parameters with a weight decay of 0.0007 and learning
rate of 0.000688. The network training has been conducted
for 200 epochs and 8 batches on the Nvidia RTX 3070 laptop
GPU and the result is shown in Fig. 5.

V. EXPERIMENTS
A. Implementation Details

The upper computer system of the experiments adopts a
laptop with an Intel i7-11700H CPU, 3070 laptop graphic
card, and 32GB RAM with Ubuntu 20.04 OS. The camera
we used Intel Realsense D4351 RGB-D camera. The mock-
up consists of 9 bags in total, each time we will fetch one out
with a self-designed needle gripper if the object is detected
and segmented appropriately with a feasible grasp pose. The

experiments are designed to answer three questions: 1) Is
the perception module capable of consistently identifying
the target object in various situations like corner stacking,
and weak illumination by one shot, 2) Can the perception
module output the reasoning and feasible target object mask
for generate grasp pose, 3) Can the grasp pose generation
module generates the reasoning and feasible grasp pose.

B. Large-size Object Detection

Firstly, we used a zero-shot object detection model Owl-
Vit to test on the mock-up with 9 wash bags inside. The re-
sults are shown in Fig. 8 a). Despite its’ impressive accuracy
in normal-size object detection, its success rate is literally
low at 44.4% in large-size object detection. The object
detection results by our trained YOLOV8 neural network
are shown in Fig. 8 b). Each bounding box represents a
wash bag classified by the trained network. Except for a
multiple detection, which takes three wash bags as one. Other
rounds all consist of single bounding boxes which can be
used for instance segmentation and further grasp. The results
comparison between Owl-Vit and our trained model is shown
in Table 1.

C. Cluttered Deformable Object Instance Segmentation

The instance segmentation results are shown in Fig. 6.
Though the boundary of deformable objects varies, our
instance segmentation module performed well and its’ ac-
curacy and robustness can be validated in this experiment.
By collecting the data on cluttered objects in narrow spaces
like corners, the spatial-constrained situations are also been
tackled well according to the result. The only wrong seg-
mentation result is due to the wrong bounding box output
from the large-size object detection module.

D. Spatial-constrained Grasp Pose Generation

The grasp pose generation results are shown in Fig. 7. We
used the cluttered deformable object instance segmentation
results to get the accordingly target point cloud, which we
can use to find the grasp pose. As we can see in the
results, the grasp pose generation module first outputs a
reasonable and feasible grasping candidate which is the
suitable grasp target in clutter. Secondly, The grasp point
of each grasp candidate appears on the outer surface with
more visual area than other surfaces which means its grasp
stability is higher, compared to other surfaces. Finally, the
approaching pose is along the normal vector of the grasp
point and is transformed from the camera pose, so it’s easy
to calculate the transformation matrix for the robot to do
motion planning.

E. Industrial Laundry Bag Grasping

The result of grasping the industrial laundry bag is shown
in Fig. 8. We mounted an Intel realsense D405 camera on
the needle gripper for the grasp pose generation. Once the
grasp pose is validated, the collision-free motion planning
module will conduct the grasping as the Fig. 8 shown.
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Fig. 7. Owl-Vit object detection result a) and trained YOLOvV8 object detection result b).
TABLE 1
OBJECT DETECTION RESULTS COMPARISON OF OWL-VIT AND OUR TRAINED YOLOV8 NETWORK ON CUSTOM LARGE-SIZE DEFORMABLE OBJECTS
DATA SET.
Model Wash Bags Amount | Successful Detection | Failed Detection Failed Reason Success Rate
Owl-Vit 9 4 5 Multiple detection, wrong object detecion 44.4%
Large-size Object Detection 9 8 1 Multiple detection 88.9%

Fig. 8.

CONCLUSION

In this paper, a deep learning approach for large-size
deformable objects grasping in clutter is proposed. It requires
single RGB-D image as input and outputs the grasp pose
for suction grasping with one-shot. We tackled the several
limitations of large-size deformable objects grasping and
conducted the experiments on the industrial washing machine
mock-up. Experiment results demonstrate the effectiveness
and accuracy of our method, which attains a detect success

Grasping of industrial laundry bag.

rate of 88.9% in real-world laundry grasping scenarios which
performs better than the current state-of-art works. Con-
sidering of the spatial-constrained working environments,
further research of us may be on the perception with partial
observation and dynamic collision-awareness motion plan-
ning. Exploiting public available dataset holds the promise
to refining the perception in those challenging cases [32].
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