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A B S T R A C T

The intelligent control of the traffic signal is critical to the optimization of transportation systems. To achieve
global optimal traffic efficiency in large-scale road networks, recent works have focused on coordination
among intersections, which have shown promising results. However, existing studies paid more attention to
observations sharing among intersections (both explicit and implicit) and did not care about the consequences
after decisions. In this paper, we design a multi-agent coordination framework based on Deep Reinforcement
Learning method for traffic signal control, defined as 𝛾-Reward that includes both original 𝛾-Reward and 𝛾-
Attention-Reward. Specifically, we propose the Spatial Differentiation method for coordination which uses the
temporal–spatial information in the replay buffer to amend the reward of each action. A concise theoretical
analysis that proves the proposed model can converge to Nash equilibrium is given. By extending the idea of
Markov Chain to the dimension of space–time, this truly decentralized coordination mechanism replaces the
graph attention method and realizes the decoupling of the road network, which is more scalable and more in
line with practice. The simulation results show that the proposed model remains a state-of-the-art performance
even not use a centralized setting. Code is available in https://github.com/Skylark0924/Gamma_Reward.
. Introduction

Traffic congestion has been an increasingly critical matter for
ecades. It not only leads to an increase in commuting time but also
xacerbates noise and environmental pollution issues due to frequent
cceleration and deceleration. According to relevant researches, almost
ll collisions and delays in urban traffic are concentrated on intersec-
ions (To and Barker, 2001). Unreasonable signal control significantly
eads to a waste of traffic resources. Therefore, the key to solve urban
ongestion is to keep the intersection clear.

Deep Reinforcement Learning (DRL) methods have been well ap-
lied in the traffic signal regulation of single-intersection and shown
better performance than traditional methods (Liang et al., 2018;
ei et al., 2018, 2019c), such as Max-pressure (Varaiya, 2013). Re-

ent works began to try to apply DRL algorithms, especially multi-
gent Reinforcement Learning (MARL) (Buşoniu et al., 2010), to multi-
ntersection and even large-scale road networks. Different from the
ingle-intersection problem, the intelligent regulation of large-scale
oad networks needs to achieve synergistic control between various
ntersections which can be regarded as a Multi-objective Optimization
roblem (MOP) and Markov/Stochastic Games (MGs) with Cooperative
etting (Zhang et al., 2019b). In other words, multiple agents need
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to coordinate with each other. They need to keep their intersection
open, and at the same time, pay attention to the traffic flow status of
surrounding or even remote intersections, so that they can ultimately
improve the efficiency of the overall road network. The latest research
introduced the graph attention network (GAT) to share the observations
of real-time traffic volume implicitly with each other, and get an
inspired result (Wei et al., 2019b).

1.1. Related work and motivation

The existing traffic signal control (TSC) methods can be divided into
two categories: rule-based methods and learning-based methods. The
former transforms the problem into a rule-based optimization problem;
the later one seeks control strategy from the traffic flow data.

For the rule-based methods, such as Webster (Koonce and
Rodegerdts, 2008), GreenWave (Török and Kertész, 1996) and Max-
pressure (Varaiya, 2013), a traffic signal optimization problem is usu-
ally solved under some assumptions like a preset period or fixed
cycle-based phase sequence (Wei et al., 2019c). Webster is used for an
isolated intersection and is a widely-used method in TSC. It assumes
that the traffic flow is uniform during a certain period and constructs a
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closed-form equation to generate the optimal cycle length and phase
split for a single intersection that minimizes the travel time of all
vehicles passing the intersection. GreenWave is a classical method
in the transportation field to implement coordination, which aims to
optimize the offsets to reduce the number of stops for vehicles traveling
along one specific direction. Max-pressure aims to reduce the risk of
over-saturation by balancing queue length between adjacent intersec-
tions and minimizing the ‘‘pressure’’ of the phases for an intersection.
However, the unpractical assumptions in these methods might not lead
to excellent performance.

Recently, the DRL technique, as a popular learning-based method,
has been proposed to control traffic signals due to its capability of
online optimization without prior knowledge about the given envi-
ronment. At present, DRL has been successfully applied to the single-
intersection regulation of traffic signal (Wei et al., 2018) by regarding
the intersection as an agent. The results of various state-of-the-art DRL
algorithms are compared in Mousavi et al. (2017), showing that Deep
Q-Networks algorithm is more suitable for the solution of TSC tasks.
However, the problem with multiple intersections is still a frontier.

Existing MARL algorithms focus on collaboration among agents and
can be divided into centralized and decentralized setting according
to various information structures (Zhang et al., 2019b). Independent
reinforcement learning (IRL), as a fully decentralized setting, directly
perform a DRL algorithm for each agent with neither explicit nor
implicit information exchange with each other. This method has been
applied in multi-intersection TSC problem (Xiong et al., 2019; Zheng
et al., 2019). However, the environment is shared in MARL, and it
changes with the policy and state of each agent (Foerster et al., 2016).
For one of the agents, the environment is dynamic and non-stationary,
leads to convergence problems. Tan (1993) compares IRL with Value
Decomposition Networks (VDN) and illustrates the disadvantages of
IRL. As a centralized method, there exists a central controller in VDN
which integrates the value function of each agent to obtain a joint
action–value function. The integration strategy is to add them directly.
Moreover, QMIX (Rashid et al., 2018), as a extend of VDN, uses state
information and integrates them in a nonlinear way and gets a stronger
approximation ability than VDN. Both QMIX and VDN are typical
centralized MARL algorithms with communication, and this joint-action
idea has been already used in TSC (Van der Pol and Oliehoek, 2016).

Based on these centralized methods, recent TSC studies condense
the global scope into a smaller neighborhood (Wei et al., 2019b; Nishi
et al., 2018; Wei et al., 2019a) and use graph convolution network
(GCN) to achieve coordination. Colight (Wei et al., 2019b) introduces
the concept of attention mechanism and realized cooperation by inte-
grating observations in a neighborhood implicitly into a hidden state.
However, as mentioned in Colight, the neighborhood scope is a con-
stant, so the traffic information among intersections cannot be utilized
to determine the range of the neighborhood. Due to the usage of
GCN and Multi-head Attention techniques, these methods still need to
gather information for centralized computing and betray the intention
of distribution.

In fact, such a central controller does not exist in many applications,
apart from those that can easily have a global perspective, like video
games (Zhang et al., 2019b). Considering the demand for the scalability
in TSC, setting a central controller is impractical. Therefore, we need
to seek a compromise solution which is both convergent and scalable.
This setting is referred to as a decentralized one with networked agents
Zhang et al., 2019b).

.2. Main contributions

In this paper, we first regard each intersection as a DRL agent and
ransform the TSC problem into a Markov Decision Process (MDP).
nlike existing work, this paper is aiming at improving method scal-
bility while ensuring a SOTA performance. To achieve this goal, we

ntroduce a structural prior about road networks as an inductive bias f

2

and extend the Markov Chain theory to the temporal–spatial domain
for the coordination.

The change of future states and rewards from distant intersections
is multiplied by the spatial discount rate 𝛾 (Note that it represents the
temporal–spatial discount on multi-agent information, not the ordinary
meaning used in temporal difference, and it will be distinguished in de-
tail later) and taken into account when learning the current intersection
policy. This information is used as a penalty to correct the calculation of
current rewards so that the agents have the ability to collaborate. Due
to the various traffic volume of each road, the influence of surrounding
intersections may be different. Therefore, the attention mechanism is
introduced in this paper to correct the influence weight of surroundings
on the current intersection.

To summarize, our main contributions are as follows:

• We propose a coordination framework, defined as 𝛾-Reward,
which can communicate with adjacent intersections and even
further in a scalable way by sharing future states and rewards
and achieve global optimal control of the TSC problem.

• Instead of Multi-head Attention, the spatial differentiation method
is proposed to collect the temporal–spatial information in a de-
centralized way and amend the current reward by recursion.

• We just use attention in the neighborhood for distinguishing
various significance, and update the attention score parameters
in spatial differentiation formula by imitating the idea of the target
network.

• It is found in the test results of various road networks that
the 𝛾-Reward series, including original 𝛾-Reward and 𝛾-Attention-
Reward, maintain a SOTA performance while achieving a better
scalability.

2. Problem formulation & proposed MARL method

In this section, we introduce the basic knowledge of the TSC prob-
lem and propose our MARL method.

2.1. Preliminary & formulation

• Lane: Lane is part of a roadway that is designated to be used by a
single line of vehicles (Wikipedia contributors, 2019). There are
two kinds of lanes: entering lane and exiting lane (Stevanovic,
2010). Each intersection consists of multiple lanes.

• Phase: A phase is a combination of movement signals (Wei et al.,
2019c). Fig. 1(a) shows eight main directions of vehicles at the
intersection. Note that the direction of turning right is usually
ignored in these problems since it can execute every time without
caring for the traffic signal. The directions in the same phase need
not be a conflict which is shown in Fig. 1(b). Phase is the unit of
TSC, and only one phase can turn green at a time.

• Neighbor intersection: The intersections which directly connect
to the current intersection. In an informal road network, each
intersection usually has at most four neighbors.

• Waiting vehicle: If a vehicle on an entering lane has a speed
lower than a threshold, then we define it as a waiting vehicle,
which means it is slowing down to wait for the red light.

By using DRL, we regard the TSC problem as MDP (see Fig. 2). An
individual DRL agent controls one of the intersections. They need to ob-
serve part of the environmental state  and get actions  according to
hese observations to determine which phase in the intersection needs
o turn green. The effect of control is fed back from the environment
n the form of reward . The goal of the DRL agent is to maximize
he reward function by continuously exploring and exploiting based on
onstant interaction with the environment. In this paper, the problem
equests to reduce the length of the queue 𝑞𝑙 or the travel time 𝑇𝑤 in
he road network. To make this problem more suitable for DRL, we can

irst abstract it into these parts ⟨,, ,, 𝜋, 𝛾⟩:
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Fig. 1. The foundation of the traffic problem; Phase is the fundamental unit of the
TSC problem. The two directions in each phase never conflict.

Fig. 2. The TSC problem is regarded as MDP. Each intersection is controlled by a
unique agent that can implement a DRL algorithm and gain an optimal strategy of
action decision. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

• Observation 𝑜𝑖𝑡: 𝒐𝑖𝑡 =
(

𝑜𝑖1,… , 𝑜𝑖𝑡
)

, where 𝒐𝑖𝑡 ∈ 𝒕
𝑖. Every agent

observes the length of the vehicle queue on entering lanes of their
intersection. Moreover, to cater to the design of the proposed 𝛾-
Reward algorithm, we also need to observe the number of vehicle
on the exiting lanes which connect to neighbor intersections.

• Action 𝑎𝑖𝑡: 𝒂𝑖𝑡 =
(

𝑎𝑖1,… , 𝑎𝑖𝑡
)

, where 𝒂𝑖𝑡 ∈ 𝒕
𝑖. Action can be easily

set as the serial number of phase which is chosen to be green.
• Transition probability  : (𝑜𝑡+1𝑖|𝑜𝑡𝑖, 𝑎𝑡𝑖) describes the probabil-

ity from state 𝑜𝑖𝑡 to the next potential state 𝑜𝑡+1𝑖.
• Reward 𝑟𝑖𝑡: After executing each action 𝑎𝑖𝑡, we can get a return

information to judge whether 𝑎𝑖𝑡 is good enough for 𝑜𝑖𝑡. We use the
number of waiting vehicle on the entering lanes as a raw reward.
For amendatory reward, we use 𝑅𝑖𝑡 as a representation.

• Policy 𝜋: Policy is what agents need to learn in DRL. It represents
the goal of reducing travel time and increasing average speed. For
a single agent, 𝜋𝑖 ∶ 𝑡𝑖 ↦ 𝑖

𝑡.
• Discount rate 𝛾 ′: This factor is the common meaning used in

Temporal-Difference (see Appendix A.1.1). To avoid confusion
with 𝛾-Reward , we use 𝛾 ′ here to replace the original symbol 𝛾.

By using the Bellman equation, the relationship among these param-
eters can be formulated. We can gain the optimal phases after iterating
 t
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Fig. 3. Left: MARL algorithms with centralized setting. Right: 𝛾-Reward framework
which is a decentralized one with network agents. 𝛾-Reward contains a coordination
mechanism proposed based on D3QN.

Fig. 4. Diagram for spatial differentiation.

these equations:

𝑄(𝑜𝑖𝑡, 𝑎
𝑖
𝑡) = 𝑄(𝑜𝑖𝑡, 𝑎

𝑖
𝑡) + 𝛼(𝑟

𝑖
𝑡 + 𝛾

′ max
𝑎𝑖𝑡+1

𝑄(𝑜𝑖𝑡+1, 𝑎
𝑖
𝑡+1) −𝑄(𝑜

𝑖
𝑡, 𝑎

𝑖
𝑡))

𝑎𝑖𝑡 = argmax𝑄(𝑜𝑖𝑡, 𝑎
𝑖
𝑡)

(1)

.2. Proposed spatial differentiation function

Coordination among agents plays a critical role in MARL algo-
ithms, either centralized or decentralized. In this paper, we propose

coordination mechanism among distributed agents. Each agent is
ased on Dueling-Double-Deep Q Network (D3QN) (Mnih et al., 2015;
an Hasselt et al., 2016; Wang et al., 2016), which is one of the
est Q value-based model until now (Hessel et al., 2018). A detailed
escription of it can be found in Appendix A.1. We found that some
tudies already use D3QN directly on the TSC problem (Liang et al.,
019), but it can only be used as an independent Q-learning (IQL)
ethod in the multi-intersection problem. For the TSC problem, the

dea of distributed agents is wise and what we need is an appro-
riate decentralized coordination mechanism. Therefore, we propose
-Reward framework for coordination (Fig. 3).

The basic theory of DRL inspires the main idea of this article. For
he TSC problem, not only the temporal decision should be regarded
s MDP, the road network itself is more like a Markov Chain since the
ecision of the current intersection will affect other intersections in the
uture. So it should consider not only the TD-error (see Appendix A.1.1)
n time, but also a ‘‘TD-error’’ in space which is defined as the spatial
ifferentiation.

Fig. 4 shows a diagram of multi-intersection road network with 3×3
ntersections. Since the decision of intersection 𝐼22 at time 𝑡 will affect
he next intersection 𝐼23 at time 𝑡 + 𝑛, the result of intersection 𝐼22 at
ime 𝑡 should be affected not only by the current intersection reward
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𝑟𝐼22𝑡 , but also by the reward 𝑟𝑗𝑡+𝑛 of the surrounding intersections at time
𝑡 + 𝑛, where 𝑗 ∈ 𝐼12, 𝐼21, 𝐼23, 𝐼32. The formula of spatial differentiation is
as follows:

𝑅𝐼22𝑡 = 𝑟𝐼22𝑡 ⋅

⎧

⎪

⎨

⎪

⎩

1 + 𝛾 ⋅ tanh
⎡

⎢

⎢

⎣

∑

𝑗∈𝑖

(

𝑅𝑗𝑡+𝑛
𝑟𝑗𝑡

− 𝑐

)

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(2)

where 𝐼22 = {𝐼12, 𝐼21, 𝐼23, 𝐼32} represents the four intersections around
intersection 𝐼22. The parameter 𝑛 is called delay span which represents
he time span of most vehicles reach the next intersection after current
ction 𝑎𝑡. It is related to the length of the road, the average velocity
n the exiting lane and sample interval. The whole formula can also be
reated as value function of reward, thus it is a spatial differentiation of
eward-value function.

In Eq. (2), 𝑅𝑗𝑡+𝑛∕𝑟
𝑗
𝑡 shows the change of traffic capacity at intersec-

tion 𝑗 between time 𝑡 and 𝑡+ 𝑛. If 𝑅𝑗𝑡+𝑛∕𝑟
𝑗
𝑡 is greater than threshold 𝑐, it

ndicates that the traffic capacity of the intersection 𝑗 is deteriorated, in
ther words, the decision of the intersection 𝐼22 at the time 𝑡 will cause
he adjacent intersection 𝑗 to be more congested; conversely, 𝑅𝑗𝑡+𝑛∕𝑟

𝑗
𝑡

less than 𝑐 indicates that the capacity of intersection 𝑗 is improved, and
the decision of the intersection 𝐼22 at time 𝑡 is good for 𝑗. Through some
region transformations, the differential item is served as a penalty.
It finally multiplies by a spatial discount factor 𝛾 as an amendment
to reward. Since the training goal of DRL is to maximize the reward
function, the existence of the penalty item forces the agent to pay
attention to the situation around the intersection while improving its
own policy.

This equation is also in line with the idea of MARL with net-
worked agents which dates back to Varshavskaya et al. (2009). -
learning (Kar et al., 2013) further gives a convergence proof of this kind
of MARL algorithm. It incorporates the idea of consensus + innovation
to the standard Q-learning algorithm and has the following Q-value
update equation:

𝑄(𝑜𝑖𝑡, 𝑎
𝑖
𝑡) ← 𝑄(𝑜𝑖𝑡, 𝑎

𝑖
𝑡)

+ 𝛼𝑡,𝑜,𝑎

[

𝑟𝑖𝑡 + 𝛾
′ max
𝑎𝑖𝑡+1∈

𝑄(𝑜𝑖𝑡+1, 𝑎
𝑖
𝑡+1) −𝑄(𝑜

𝑖
𝑡, 𝑎

𝑖
𝑡)

]

− 𝛽𝑡,𝑜,𝑎
∑

𝑗∈ 𝑖
𝑡

[

𝑄(𝑜𝑖𝑡, 𝑎
𝑖
𝑡) −𝑄(𝑜

𝑗
𝑡 , 𝑎

𝑗
𝑡 )
]

(3)

where the term after 𝛼𝑡,𝑜,𝑎 denotes a local innovation potential that
incorporates newly obtained observations, and the term after 𝛽𝑡,𝑜,𝑎 is a
consensus potential (agent collaboration) which captures the difference
of Q-value estimates from its neighbors.

Analogously, our Q-value update equation can be changed as fol-
lows:

𝑄(𝑜𝑖𝑡, 𝑎
𝑖
𝑡) =𝑄(𝑜

𝑖
𝑡, 𝑎

𝑖
𝑡) + 𝛼{𝑟

𝑖
𝑡 + 𝛾 ⋅ 𝑟

𝑖
𝑡 ⋅ tanh[

∑

𝑗∈𝑖

(
𝑅𝑗𝑡+𝑛
𝑟𝑗𝑡

− 𝑐)]

+ 𝛾 ′ max
𝑎𝑖𝑡+1∈

𝑄(𝑜𝑖𝑡+1, 𝑎
𝑖
𝑡+1) −𝑄(𝑜

𝑖
𝑡, 𝑎

𝑖
𝑡)}

(4)

The spatial differentiation term denotes the consensus like -
learning and we further construct the communication in the temporal
domain and the spatial domain at the same time. Although Eq. (2)
uses future information which sounds contrary to the causality, it is
achievable in the programming. Since we use Q-learning as a basic
model which is off-policy, it saves the trajectory of state–action pair and
the obtained reward into a replay buffer. In this way, the raw reward 𝑟𝑖𝑡
is saved first and then corrected after 𝑛 steps. Therefore the calculation
process can be realized (see Appendix A.2 for pseudocode).

2.3. Attention mechanism for 𝛾-reward

The spatial differentiation formula proposed in the previous section
is based on the fact that each intersection in the road network has the
same situation. In other words, the levels of them are equal. But in
 c

4

reality, the levels of the intersections in the road network are different,
some have only one or two lanes, and others may have four to six.
Imagine if the intersection 𝐼22 in Fig. 4 is a two-way road which has
eight lanes, the intersection 𝐼23 is same as 𝐼22, while on the other side,
the intersection 𝐼32 is a two-way which only has two lanes. The decision
of intersection 𝐼22 in 𝐼22 ⇒ 𝐼23 and 𝐼22 ⇒ 𝐼32 is inevitably different. The
discharge of intersection 𝐼22 can easily lead to excessive congestion at
ntersection 𝐼32, but it may not be very serious for intersection 𝐼23. In
ddition to the number of lanes at the intersection, the length between
ach intersection is different, which means that the maximum conges-
ion length each intersection can accept is also different. In summary,
hen using a spatial differentiation formula correction at an intersection,

here are different influence weights for different intersections.
The problems mentioned above can indeed be solved by setting

ifferent thresholds to get weights, like (Liu et al., 2017). However,
he actual road network situation is very complicated. There is no way
o include all parameters into consideration. Therefore, we can learn
he rules from the traffic data. In this respect, the attention mechanism
ives us a good solution.

Attention mechanism (Bahdanau et al., 2014; Cho et al., 2014;
aswani et al., 2017) is an algorithm first proposed to solve ‘‘seq2seq’’

ranslation problem in NLP. Attention can be interpreted broadly as a
ector of importance weights: To predict an element, such as a word in
sentence, attention vector can be used to estimate how strongly it is

elated to other elements, and the sum of its values can be used as an
pproximation of the target. It breaks the limits of Euclidean distance
etween data, captures long-range dependencies in the sentences, and
rovides smoother translations.

In addition to sequence data, Attention can also be used for other
ypes of problems. In the graphics world, the GCN (Kipf and Welling,
016) tells us that combining local graph structures with node features
an achieve good performances in node classification tasks. However,
he way GCN combines the characteristics of neighboring nodes is
losely related to the structure of the graph, which limits the gener-
lization ability of the trained model on other graph structures. The
AT (Veličković et al., 2018) proposes a weighted summation of neigh-
oring node features using the attention mechanism. The weights of the
eighboring node feature depend entirely on the node characteristics
nd are independent of the graph structure.

Recent research has begun to introduce the idea of Attention to
ARL algorithms. A Multi-Agent Actor–Critic (MAAC) algorithm has

een proposed that combines attention mechanism (Iqbal and Sha,
018). MAAC encodes the state of the surrounding agents and obtains
he contribution value of the surrounding agents to the current agent
hrough the attention network, together with (𝑜, 𝑎) of the current agent
s an input, the Q value is obtained through an MLP. While the Q
etwork is updated in reverse, the attention network is updated, and
he attention scores of the surrounding agents for the current agent are
lso corrected. Colight applied attention mechanism to the TSC problem
f the large-scale road network, it encodes the state and directly obtains
he Q value through the Multi-head Attention network.

.3.1. Attention
Every agent can interact with their environment and get the ob-

ervation on time. We first need to embed the observation from the
nvironment by applying a layer of Multi-layer Perception (MLP):

𝑖 = 𝑊𝑙𝑜𝑖 + 𝑏 (5)

To get the weight of the intersection 𝑖 to the adjacent intersection
, we need to combine their hidden variables 𝑧𝑖, 𝑧𝑗 by following dot
roduct:

𝑖𝑗 = 𝑧𝑇𝑗 𝑊
𝑇
𝑘 𝑊𝑞𝑧𝑖 (6)

𝑒𝑖𝑗 , represents the influence of the adjacent intersection 𝑗 on the
urrent intersection 𝑖. It should be noted that the influence between
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Fig. 5. Framework of the proposed 𝛾-Attention-Reward model; In the inner cycle, eval Attention Layers and eval Q Network in blue are used to evaluate real-time Q value for the
control. In the external cycle, target system in orange is used to predict long-term impact for improving the performance of Q network and updated periodically. At the right of
this figure, we illustrate the message mechanism in original 𝛾-Reward by the example of a 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙1×5 road network. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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them may not be necessarily equal. Then we normalize them by softmax
function:

𝛼𝑖𝑗 =
exp

(

𝑒𝑖𝑗
)

∑

𝑘∈𝑖
exp

(

𝑒𝑖𝑘
) (7)

Impact value 𝑣𝑖𝑗 can be calculate as 𝑣𝑖𝑗 = 𝛼𝑖𝑗𝑧𝑗 , which means the
value 𝑖 needs to consider from 𝑗. Finally, adding them together and
assing the RELU activation function, the final characterization of the
ntersection 𝑖 is obtained:

ℎ𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑗∈𝑖

𝛼𝑖𝑗𝑧𝑗
⎞

⎟

⎟

⎠

(8)

2.3.2. 𝛾-attention-reward
We use the attention mechanism to make spatial differentiation func-

ion more perfect and interpretable by adding an attention score before
he sum operation.

𝑅𝑖𝑡 = 𝑟𝑖𝑡 ⋅

⎧

⎪

⎨

⎪

⎩

1 + 𝛾 ⋅ tanh
⎡

⎢

⎢

⎣

∑

𝑗∈𝑖

𝛼̂𝑗𝑖

(

𝑅𝑗𝑡+𝑛
𝑟𝑗𝑡

− 𝑐

)

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(9)

Attention score is updated together with the policies:

(𝜋𝑖𝜃) = (𝑅𝑖 + 𝛾 ′ max 𝑄̂(𝑜𝑖, 𝑎𝑖; 𝜃̂𝑖, 𝜶̂𝑖) −𝑄(𝑜𝑖, 𝑎𝑖; 𝜃𝑖,𝜶𝑖))2 (10)

It is worth emphasizing that 𝛼𝑖𝑗 represents the importance from 𝑗 to
, but for 𝛾-Reward we seek the influence from 𝑖 to 𝑗. So in Eqs. (9) and
10), we need to use 𝛼𝑗𝑖 for amending rewards of agent 𝑖.

Since the attention score 𝛼𝑗𝑖 is a real-time updated value, this paper
ses it as an evaluation metric to dynamically assess the impact of sur-
ounding intersections based on dynamic traffic data. While the reward
s also an evaluation indicator, which is timely feedback obtained after
erforming an action at a particular state, used to evaluate the quality
f the state–action pair. If we introduce 𝛼𝑖𝑗 into the calculation of
eward-value and update it in real-time, there is bound to be a problem.
his causes the Attention layer to update the direction intentionally,
hich reduces the impact of essential neighbor intersections and in-
reases those with less traffic flow to increase the reward-value. In this

5

ay, the introduction of the attention score will be even worse than the
riginal 𝛾-Reward. To solve this problem, we can follow the Q-learning
lgorithm and use the off-policy idea to get target attention scores 𝛼̂𝑖𝑗
n the reward calculation using target Attention layers. Its network
arameters are updated together with target Q parameters 𝜃̂. The whole
ramework of the proposed 𝛾-Attention-Reward model is shown in Fig. 5.

In Colight, there is a section devoted to the selection of the hyper-
parameter neighbor scope. It is found through experiments that the
larger the |

|

𝑖
|

|

is, the better the performance is. But when it is greater
than 5, it takes more time to learn. This is because intersections within
the scope of |

|

𝑖
|

|

needs to aggregate all the observations into one
agent, and the total number of agents is still equal to the intersection,
which will inevitably lead to an increase in the amount of calculation.
However, unlike Colight, 𝛾-reward does not need to consider the size
setting of the neighbor number. We can merely consider the neighbor
number as a constant 5, which contains the current intersection and
the four intersections directly connected to it. Note that, we do not
need to employ Multi-head Attention which leads to centralization. For
the information of further intersections, recursiveness in the 𝛾-Reward
formula can work.

From the original 𝛾-Reward part in Fig. 5, we can figure out its prin-
ciple. The row in the figure represents the state information collected in
time series and the column represents each intersection. To prevent too
much confusion, only the 𝛾-Reward process of intersection 𝐼13 is shown
as a demonstration, and the interval of the scale variable 𝑛 is also not
shown here. The value of 𝑅𝑡13 is related to 𝑅𝑡+𝑛12 and 𝑅𝑡+𝑛14 . By analogy,
these two rewards are related to 𝑅𝑡+2𝑛11 and 𝑅𝑡+2𝑛15 respectively. It is worth
noting that only a two-dimensional replay buffer is drawn here, in fact,
the real intersection has four or more surrounding intersections, so it
should be a three-dimensional gradient.

3. Theoretical analysis in game theory

In this section, we establish theoretical results for the proposed
algorithms. The key challenge of MARL algorithms is that the decision
process may be non-stationary (Omidshafiei et al., 2017; Laurent et al.,
2011). Since an agent is not aware of actions from other agents and lack

𝑖 𝑖 𝑖 𝑖 𝑖
of communication, the transition probabilities (𝑜𝑡+1|𝑜𝑡 ∈ 𝑡, 𝑎𝑡 ∈ 𝑡)
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𝒂

a

w
(

are not stationary and change as the other agents change. So we first
need to demonstrate the decision process is stationary by using the
proposed algorithms. Specifically, MARL can be regarded as a game
model (Aragon-Gómez and Clempner, 2020), and we prove that they
can converge to Nash equilibrium. The argument is started with the
following definitions.

Definition 3.1. A decentralized MARL decision process is stationary
(or homogeneous), iff, for each agent 𝑖 and all 𝑝, 𝑞 ∈ N, 𝑜𝑖 ∈ 𝑖,
𝑖 ∈ 𝑖(Omidshafiei et al., 2017)
∑

𝒂−𝑖𝑝 ∈𝑨−𝑖
𝑝

𝑖
(

𝑜𝑖𝑝+1|𝑜
𝑖
𝑝,
⟨

𝑎𝑖𝑝,𝒂
−𝑖
𝑝

⟩)

=

∑

𝒂−𝑖𝑞 ∈𝑨−𝑖
𝑞

𝑖
(

𝑜𝑖𝑞+1|𝑜
𝑖
𝑞 ,
⟨

𝑎𝑖𝑞 ,𝒂
−𝑖
𝑞

⟩) (11)

nd  for global state 𝑠 ∈  must be stationary either.
∑

𝒂−𝑖𝑝 ∈𝑨−𝑖
𝑝


(

𝑠𝑖𝑝+1|𝑠
𝑖
𝑝,
⟨

𝑎𝑖𝑝,𝒂
−𝑖
𝑝

⟩)

=

∑

𝒂−𝑖𝑞 ∈𝑨−𝑖
𝑞


(

𝑠𝑖𝑞+1|𝑠
𝑖
𝑞 ,
⟨

𝑎𝑖𝑞 ,𝒂
−𝑖
𝑞

⟩) (12)

where 𝒂−𝑖 = 𝒂∖
{

𝑎𝑖
}

.
Based on the definition of stationary MDP, we can define optimal

global reward for proving the astringency of proposed methods by
extending the definition by Nguyen et al. (2014).

Definition 3.2. For a stationary MDP, the global optimal reward can
be decomposed into a sum of local optimal reward for each reward
function 𝑓𝑖 ∈ 

𝜌∗ =
𝑚
∑

𝑖=1
𝜌∗𝑖 (13)

Proof Sketch. For a given stationary MDP, there must exists a station-
ary 𝜋𝑖∗

𝑖 , where 𝜋𝑖∗ is the optimal policy of agent 𝑖

𝜌𝜋
𝑖
∗
𝑖 =

∑

𝑜𝑖∈𝑖
𝜋𝑖∗
𝑖 (𝑜𝑖)𝑓𝑖(𝑜𝑖, 𝑎𝑖|𝑎𝑖 = 𝜋𝑖∗(𝑜

𝑖)) □ (14)

Definition 3.3. In stochastic game, a Nash equilibrium point is a
tuple of 𝑚 strategies

(

𝜋1∗ ,… , 𝜋𝑚∗
)

such that for all global state 𝑠 ∈ 
and 𝑖 = 1,… , 𝑚 (Hu and Wellman, 2003)

𝜈𝑖(𝑠|𝜋1∗ ,… , 𝜋𝑚∗ ) ≤ 𝜈𝑖(𝑠|𝜋1∗ ,… , 𝜋𝑖, 𝜋𝑖+1∗ ,… , 𝜋𝑚∗ ) (15)

for all 𝜋𝑖∗ ∈ 𝛱 𝑖, where 𝛱 𝑖 is the set of policies of total 𝑚 agents.

3.1. Stationarity of 𝛾-Reward series

First, we give the proof of stationarity. Unless the MDP is stationary,
the model cannot guarantee convergence to the optimal.

Assumption 3.1. The original reward function can be represented as

𝑟𝑖𝑡 = 𝑓 (𝒐𝑖𝑡,𝒂
𝑖
𝑡) (16)

where 𝒐𝑖,𝒂𝑖 include state–action pair from time step 1 to 𝑡. Assume that
𝛾-Reward series are special reward function 𝑓 (𝑜, 𝑎).

𝑅𝑖𝑡 = 𝑓
(⟨

𝒐𝑖𝑡,𝒐
−𝑖
𝑘
⟩

,
⟨

𝒂𝑖𝑡,𝒂
−𝑖
𝑘
⟩)

(17)

𝑘 ∈ [1,N].

Assumption 3.2. As a continuing task without definite ending, the
excepted reward 𝑖𝑡 of TSC problem is defined as following with a
discount rate 𝛾 ′

𝑡 ≐ 𝑟𝑡+1 + 𝛾 ′𝑟𝑡+2 + (𝛾 ′)2𝑟𝑡+3 +⋯ =
N−𝑡
∑

𝑘=0
(𝛾 ′)𝑘𝑟𝑡+𝑘+1 (18)
6

Assumption 3.3. The Q function is based on trajectory of expected
return.

𝑄(𝑜, 𝑎|𝜋) =
∑

(𝑝𝑎𝑡ℎ𝑜,𝑎|𝜋) ∗ (𝑝𝑎𝑡ℎ𝑜,𝑎) (19)

𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄max(𝑜, 𝑎|𝜋) (20)

Theorem 3.1. With 𝛾-Reward as a coordination mechanism, the decision
process of distributed DQN algorithm () is stationary.

Proof Sketch. According to Assumptions 3.2 and 3.3, 𝑄 value function
with 𝛾-Reward () can be written as follow

()𝑖𝑡(𝑜, 𝑎|𝜋) =
N
∑

𝑡=0
()𝑖𝑡(𝑝𝑎𝑡ℎ𝑜𝑖 ,𝑎𝑖 |𝜋) ∗ ()𝑖(𝑝𝑎𝑡ℎ𝑜𝑖 ,𝑎𝑖 )

= 𝑄
(⟨

𝒐𝑖𝑡,𝒐
−𝑖
𝑘
⟩

,
⟨

𝒂𝑖𝑡,𝒂
−𝑖
𝑘
⟩

|𝜋
)

(21)

The calculation of () is related to the except reward path. ()𝑖𝑡 is
a discounted sum of amendatory reward 𝑅𝑖𝑡, which is bound up with not
only (𝑜𝑖, 𝑎𝑖), but also (𝑜−𝑖, 𝑎−𝑖) from the other agents. Since ()𝑖𝑡 records
the future trajectory of amendatory reward from time step 𝑡 to the end
of episode, it must contain the previous and posterior state–action pair
as a vector, like Eq. (17) shown in Assumption 3.1. According to the
above two properties, we can decompose () by using Eq. (20).

()𝑖𝑡(𝑜
𝑖
𝑡+1|𝑜

𝑖
𝑡, 𝑎

𝑖
𝑡) =  𝑖

𝑡 (𝑜
𝑖
𝑡+1|𝑜

𝑖
𝑡, 𝑎𝑟𝑔𝑚𝑎𝑥 ()𝑖𝑡max(𝒐,𝒂))

=  𝑖
𝑡
(

𝑜𝑖𝑡+1|𝑜
𝑖
𝑡,
⟨

𝑎𝑖𝑡,𝒂
−𝑖
𝑘
⟩) (22)

where 𝑘 ∈ [1,N]. Obviously, () satisfy the property in Definition 3.1.
Thus, the process with 𝛾-Reward series is a stationary process. □

3.2. Convergence of 𝛾-Reward series

Theorem 3.2. Spatial differentiation formula in original 𝛾-Reward can
lead the reward value function to converge to local optimal reward.

Proof Sketch. As mentioned in Section 2.B, our Q-value function
shares a similar structure with -learning. So the proof is inspired
by the convergence analysis of -learning. Since this article is not
mainly about multi-agent theory, we would like to simply transform 𝛾-
Reward into the form of -learning convergence proof. By following
the rest of the proof process in -learning, we can get the conclusion
of convergence. Thus, we highly recommend readers to read the whole
analysis in -learning.

According to the Spectral Graph Theory, the multi-agent communica-
tion network is simplified to an undirected graph 𝐺 = (𝑉 ,𝐸), where 𝑉
represents intersections and 𝐸 denotes the communication links. From
the adjacency matrix 𝐴 (𝐴𝑖𝑗=1, if (𝑖, 𝑗) ∈ 𝐸, 𝐴𝑖𝑗 = 0, otherwise) and
the degree matrix 𝐷 = diag{𝑑1,… , 𝑑𝑁} (𝑑𝑖 = |𝑖|), we can get a
positive definite graph Laplacian matrix 𝐿 = 𝐷−𝐴, where eigenvalues
ordered as 0 = 𝜆1(𝐿) ≤ 𝜆2(𝐿) ≤ ⋯ ≤ 𝜆𝑁 (𝐿). Let 𝛽 = −𝛼𝛾 and
𝛽tanh[∑𝑗∈𝑖

(
𝑅𝑗𝑡+𝑛
𝑟𝑗𝑡

− 𝑐)] = −𝛽tanh[∑𝑗∈𝑖
(𝑐 −

𝑅𝑗𝑡+𝑛
𝑟𝑗𝑡

)], we note that

𝑸𝒐,𝒂(𝑡 + 1) = (𝐼𝑁 − 𝛽𝐿𝑡 + 𝛼𝐼𝑁 )𝒓𝑡
+ 𝛼(𝒐,𝒂(𝑸𝒕) −𝑸𝒐,𝒂(𝑡) + 𝝂𝑡)

(23)

here 𝑸𝒐,𝒂 = [𝑄1
𝑜,𝑎(𝑡),… , 𝑄𝑁𝑜,𝑎(𝑡)]

𝑇 and 𝒐,𝒂(𝑸𝒕) = [1
𝑜,𝑎(𝑄

1
𝑡 ),… ,𝑁𝑜,𝑎

𝑄𝑁𝑡 )]𝑇 . The local 𝛾-Reward operator 𝑖 of agent 𝑖 is

𝑖𝑜,𝑎(𝑄) = E(𝑟𝑖𝑡) + 𝛾
′
∑

𝑗∈
𝑝𝑎𝑖,𝑗 max

𝑣∈
𝑄𝑗,𝑣 (24)

The residual 𝜈𝑖𝑡 for each agent 𝑖 in Eq. (23) is

𝜈𝑖𝑡 (𝑜, 𝑎) = (1 − 1
𝛼
)𝑟𝑖𝑡 + 𝛾

′ max
𝑣∈

𝑄𝑖𝑜𝑡+1 ,𝑣(𝑡) − 𝑖𝑜,𝑎 (𝑄) (25)

By following the proof in Section 5 of -learning, we can get the
same main result that for each agent 𝑖, we have

P( lim 𝑸𝑖 = 𝑸∗) = 1 (26)
𝑡→∞ 𝑡



J. Liu, H. Zhang, Z. Fu et al. Engineering Applications of Artificial Intelligence 100 (2021) 104165

R
t

3

w
n
r
f

T
t

P
D

𝜈

o
𝜌
o
c
t

4

t
r
s
R
f
A

4

W
T
d
d
b
o
a
d
M
t
𝐺
r

4

t
p
d
r

o
c
s
a

Table 1
Situation of datasets.

DataSet Intersections Arrival rate (vehicles/300 s)

Mean Std Max Min

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙1×6a 6 300 – – –
𝐺𝑟𝑖𝑑3×3𝑢𝑛𝑖a 9 300 – – –
𝐺𝑟𝑖𝑑3×3𝑏𝑖a 9 300 – – –
𝑁𝑒𝑤𝑌 𝑜𝑟𝑘16×3 48 240.79 10.08 274 216
𝐽𝑖𝑛𝑎𝑛3×4 12 526.63 86.70 676 256
𝐻𝑎𝑛𝑔𝑧ℎ𝑜𝑢4×4 16 250.79 38.21 335 208

aTraffic flow from synthetic data are uniform, so there is no need to count another
three values.

We can conclude that spatial differentiation formula can lead the 𝛾-
eward to converge to local optimal. Obviously, 𝛾-Attention-Reward has

he same property. □

.3. Optimality of 𝛾-Reward model

For a stochastic game with multi-agent, the optimal point of the
hole system is a Nash equilibrium point which is declared in Defi-
ition 3.3. 𝜈𝑖(𝑠|𝜋1∗ ,… , 𝜋𝑚∗ ) can be interpreted as the discounted except
eward . According to previous two theorems, we can draw the
ollowing conclusions.

heorem 3.3. With 𝛾-Reward model, the multi-agent system can converge
o a Nash equilibrium point.

roof Sketch. First we give the definition of optimal 𝜈∗ with
efinition 3.2

𝑖(𝑠|𝜋1∗ ,… , 𝜋𝑚∗ ) = 𝜌∗ =
𝑚
∑

𝑖=1
𝜌∗𝑖 (27)

From the process of convergence proof, we can figure that the local
ptimal reward of 𝑅𝑖 depends on the local optimal of the other agents
∗
𝑗 . In other words, if there is an agent which does not converge to local
ptimal reward, the other will also not be optimal. From this, we can
onclude that 𝛾-Reward forces agents to care about the others and let
he whole system finally converge to a Nash equilibrium point. □

. Experiment

We conduct experiments on Cityflow, an open-source traffic simula-
or that supports large-scale traffic signal control (Zhang et al., 2019a),
ather than the common used SUMO simulator (Krajzewicz, 2010),
ince it is more than twenty times faster than SUMO. Moreover, we use
ay (Moritz et al., 2018) framework, which is an open-source library

or reinforcement learning that offers both high scalability and a unified
PI for a variety of applications for DRL algorithms.

.1. Datasets

In the experiment, we use both synthetic data and real-world data.
e share the same real-world dataset with Colight for convenience.

he datasets mainly include two parts, roadnet and flow. Roadnet
escribes the number of intersections in the road network, the coor-
inates, and the number of lanes owned by each intersection. Flow is
ased on vehicles and lists thousands of vehicles, each vehicle has its
wn property, such as length, width, max of accuracy, max of speed
nd, most importantly, trajectory. The experiment used the real-world
ata of Hangzhou, Jinan in China, and also New York in the USA.
eanwhile, we used two kinds of synthetic data, arterial and grid

ype. We counted their characteristics and presented them in Table 1.
𝑟𝑖𝑑3×3𝑢𝑛𝑖 is one-way traffic, and 𝐺𝑟𝑖𝑑3×3𝑏𝑖 is two-way with the same
oad network.

7

.2. Baseline methods

In Section 2, we have already introduced methods for TSC, including
raditional rule-based methods and learning-based methods. The most
rimitive rule-based methods are still the most common methods nowa-
ays. As a mature rule-based method, Max-Pressure can be used as a
epresentative.

Learning-based methods have been prosperous under the devel-
pment of deep learning and data science in recent years. They are
haracterized by the use of large-scale data to approximate optimal
trategies through iterative learning. We have chosen several methods
s the baseline:

• IQL: Since 𝛾-Reward is based on the decoupling idea of IQL, and
introduces a coordination mechanism so that it can demonstrate
the impact of coordination mechanism compared to IQL. Here we
use original D3QN, like (Liang et al., 2019), for comparison.

• QMIX : This is a sophisticated MARL algorithm, which integrates
all agents into the same model and concentrates on the learn-
ing of joint action reward functions. As a typical one-model
method, comparing it with 𝛾-Reward can effectively observe the
advantages and disadvantages of joint learning and independent
learning for coordination.

• Colight : Unlike 𝛾-Reward, Colight is more like QMIX, but not
learns a joint action. It uses Attention layers to train the surround-
ing observation code to replace the observation of the current
intersection. Due to its full collection of observation, it can apply
Multi-head Attention. By this way, the coordination between
agents is realized. 𝛾-Attention-Reward has made some improve-
ments on this basis. The method of Replay Buffer Amendment is
employed to introduce the effect of the current intersection on
the surrounding intersection, replacing the hyperparameter |

|

𝑖
|

|

in Colight and adding consideration of the impact of actions on
both time and space.

4.3. Evaluation performance

Fig. 6 and Table 2 shows the performance comparison between 𝛾-
Reward and the more comprehensive 𝛾-Attention-Reward and baselines.
Each model has trained 100 iterations, and each iteration run 3600
time steps in the simulator. Each action in them lasts at least 10 s for
avoiding rapid switching phase impracticably. Delay span 𝑛 = 10 s and
threshold 𝑐 = 0.8.

We use the average transit time of the vehicle to evaluate the
performance of the model, which is the standard evaluation method
in the field of TSC.

The performance of learning-based methods is significantly better
than rule-based Max-Pressure (Table 2), which is widely proved in
many researches.

Among the independent learning DRL model, the performance of
𝛾-Reward series far exceeds the IQL model. This demonstrates the
importance of coordination between agents for global performance
improvement.

It is worth noting that, in all road network, the independent learn-
ing DRL model shows a stronger astringency than one-model QMIX.
That is probably because for a single model, excessive dimensions can
make the policy more difficult to learn. However, Colight does not
show divergence while achieved excellent results. This may benefit
from that it does not make joint decisions through the joint action
function, but by sharing network parameters, so that all agents generate
independent actions. Since the agents share the model parameters,
they will undoubtedly ignore individual differences and sacrifice some
performance. Compared to the proposed model, intense oscillations
sometimes occur in Colight during training. This is also a result of
sharing parameters. Once the model iterating in the wrong direction, it
will mislead all agents and lead to horrible congestion in the whole

road network. The performance of proposed methods is even better
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Fig. 6. Evaluation performance compared among baselines, proposed 𝛾-Reward and 𝛾-Attention-Reward.
Table 2
Performance comparison (average travel time).

Model 𝐺𝑟𝑖𝑑3×3𝑏𝑖 𝐺𝑟𝑖𝑑3×3𝑢𝑛𝑖 𝑁𝑒𝑤𝑌 𝑜𝑟𝑘16×3 𝐽𝑖𝑛𝑎𝑛3×4 𝐻𝑎𝑛𝑔𝑧ℎ𝑜𝑢4×4
Max-pressure 204.72 186.06 405.69 359.81 431.53

IQL 191.05 157.51 248.46 371.74 406.27
QMIX 565.70 619.32 216.56 571.78 587.46
Colight 104.89 100.96 169.66 301.78 311.15

𝛾-Reward 96.44 175.38 162.18 303.97 304.90
𝛾-Attention-Reward 96.14 93.93 141.16 286.27 284.24
c
o

than Colight, which means sharing sensation is not the only way to
realize coordination. Sharing results can also help to focus on the whole
road network for a single intersection.

In real-world road networks, 𝛾-Reward and 𝛾-Attention-Reward do
ot show gigantic difference. The reason is that all real-world road
etworks we used are two-way road. We will introduce the study
bout the attention score later and can be shown in Figs. 9 and 10. It
as shown its effect in specifically synthetic road networks. Compared
𝑟𝑖𝑑6×6𝑏𝑖 and 𝐺𝑟𝑖𝑑6×6𝑢𝑛𝑖 in Fig. 6, Attention layers distinguish one-way
nd two-way, and assist agents to achieve a better performance. This
ill also describe later by revealing the detail of Attention layers.

.4. Study of hyperparameter 𝛾

We use 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙1×6 road network to study the impact of different
value. We have chosen [0.1, 0.3, 0.5, 0.7, 0.9] five 𝛾 values and
8

ompared the results. As shown in Fig. 7, 0.5 may be a balance point
f the penalty item. So for the hyperparameter 𝛾, we all set it to 0.5.

4.5. Visualization of proposed method

The core idea of the 𝛾-Reward algorithm is to correct the reward in
the replay buffer. In this section, we use the 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙1×6 road network
as an example to show how the reward values between different
intersections affect each other. Compare the 𝐺𝑟𝑖𝑑3×3𝑢𝑛𝑖 and 𝐺𝑟𝑖𝑑3×3𝑏𝑖
road networks to demonstrate the role of the attention mechanism in
the 𝛾-Reward algorithm improvement.

4.5.1. Visualization of spatial differentiation formula
In Fig. 8, dashed lines represent the original reward, and solid

lines represent the corrected reward. Since the linear road network is



J. Liu, H. Zhang, Z. Fu et al. Engineering Applications of Artificial Intelligence 100 (2021) 104165

r
t
o

s
e
t

t
l
a
b
t

y

Fig. 7. Study of hyperparameter 𝛾; dark lines represent results after smoothing, light
lines represent the deviation of raw results.

Fig. 8. Visualization of the reward changing by spatial differentiation; 𝑟𝑖 represents raw
eward from D3QN, 𝑅𝑖 represents the reward after amendment. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)

elected, there are no more than two adjacent intersections, so it is
asier to observe the influence between the intersections. We just select
he first two intersections for clearness.

Observe the red line in the light yellow area, which represents
he reward for the second intersection. It can be found that the solid
ine in this area is almost above the dashed line, meaning that after
mendment, rewards become better. The reason is shown in the light
lue area, dark blue and pink lines are getting a raise, which means the
raffic situation is getting better both in intersection 𝐼11 and 𝐼13. We

believe that in the process of getting better at these two intersections,
some of the efforts are contributed by intersection 𝐼12. The lag between
ellow and blue area is up to the delay span 𝑛.

From Fig. 8, we can see that in the actual training, the 𝛾-Reward
framework, as what we expected, introduces future changes in nearby
intersections.

4.5.2. Effect of attention mechanism
Fig. 9 shows attention scores from Hangzhou road network. We

can find that except current intersection 𝐼22, others are declined and
tending to the same value. Therefore, Attention does not play an
important role in these real-world datasets. The reason could be that
all of them are two-way road and have the same number of lanes. To
highlight its effect, we need to compare the situation between one-way
and two-way traffic in the same road network. Thus, we use 𝐺𝑟𝑖𝑑3×3𝑢𝑛𝑖
and 𝐺𝑟𝑖𝑑 𝑏𝑖 for visualization.
3×3

9

Fig. 9. Attention score of intersection 𝐼22 selected from 𝐻𝑎𝑛𝑔𝑧ℎ𝑜𝑢4×4 road network.

Fig. 10. Attention layers learn the different of surrounding from traffic flow; 𝐺𝑟𝑖𝑑3×3𝑏𝑖
and 𝐺𝑟𝑖𝑑3×3𝑢𝑛𝑖 road network are used for comparison to show the effect of attention
layers.

Fig. 10 shows the comparison between one-way and two-way 3 ×
3 network. Comparing Fig. 10(a) with Fig. 10(b), the score change
of intersection 𝐼 in Fig. 10(a) is the equalization of surrounding
22
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Fig. 11. Training time of 𝛾-Reward series and Colight; Note that in order to show the
ifference between centralized and decentralized algorithms, we illustrate training time
f one agent in 𝛾-Reward series..

ntersection 𝐼12, 𝐼21, 𝐼23 and 𝐼32. While in Fig. 10(b), the intersection
rom the direction of exiting is obviously holding a commanding edge.
his means that the attention mechanism does have a significant effect

n understanding the structure of the road network. With the attention
echanism, the reward amendment is more concerned with the results

f its actions, which is crucial in the revision of reward.

. Discussion about real world application

TSC is an actual task running without the simulator, and the pro-
osed control plan should aim at solving practical problems. Therefore,
t is necessary to take the limitations that may exist in practice into
ccount.

.1. Scalability

Scalability is an important standard to evaluate whether a TSC
ethod is meaningful. The proposed methods in this paper are both
ecentralized, each D3QN agent can be deployed on the embedding
evice in each intersection respectively. Either the training time or
he inference time of our methods is not related to the number of
ntersections. Besides, the message transmission among neighboring
ntersections just takes tolerable time and all of the intersections com-
unicate in parallel. Due to the limitation of computing capacity,

xperiments of larger scale are not able to conduct. Instead, we an-
lyze the scalability by collecting the training time on datasets with
ifferent scales which is listed in Fig. 11. As the number of intersections
ncreased, the time cost of Colight is significantly larger. In contrast, our
ethods remain a shorter training time due to the parallel computation.
nother advantage is when the road network structure is changed,
e only need to train the newly added intersections separately and

here is a tiny impact on existing intersections. Therefore, the proposed
ethods are believed to be scalable.

.2. Real-time

Real-time traffic communication may have problems like commu-
ication delay, information security, and risk of packet loss (Ezell
t al., 2013). Therefore, it is necessary to decouple the calculation
f the whole road network. Decentralization is becoming the trend of
olutions in TSC problem (Liu et al., 2017; Chu et al., 2016). Colight,
hile using Multi-head Attention technology and sharing parameter,

ummarizes the relationship of the global road network and reduces
he time complexity and space complexity of training. However, if we
pply it to the practice, the global road network information in real-
ime is first needed to transmit to the central server for calculation,
nd then the server needs to dispense the resulting actions to each
 c

10
intersection. Note that it is not just transmitting actions of each traffic
signal, but also their sensor observations! In contrast, communication
in our methods occurs in a small neighborhood, and the messages they
need are only several bits. These attributes help the intersections keep
in touch in real-time.

5.3. Further applications

The coordination mechanism in this paper can be expended to other
multi-agent tasks which face the problem of scalability and real-time.
For instance, the power dispatching of power networks can be described
as the same as the TSC problem. Power transmission is similar to the
traffic flow between two neighboring intersections. Furthermore, the
control of a multi-joint tandem robot may be regarded as a multi-agent
task. Actions from the joint which nears the base have a consequence on
other joints and the end-effector. We can use the coordination mecha-
nism to consider this effect on neighboring agents or joints and achieve
a global optimal performance. There are already broad applications
using this kind of coordination mechanism in engineering systems like
sensor networks (Rabbat and Nowak, 2004), smart grid (Zhang et al.,
2018) and robotics (Corke et al., 2005).

6. Conclusion

In this paper, we propose the 𝛾-Reward method and its variant 𝛾-
Attention-Reward that introduces the attention mechanism to solve the
problem of intelligent control of the traffic signal. By extending the
Markov Chain to the space–time domain, the methods turn to be a
scalable solution for TSC. Specially, we give a concise proof of the
spatial differentiation formula which shows that the two frameworks can
converge to Nash equilibrium. We conduct extensive experiments using
both real-world and synthetic data. They confirm that our proposed
methods have a superior performance over state-of-the-art methods. In
the asymmetry road network, 𝛾-Attention-Reward shows inspired results
than 𝛾-Reward by adding the attention mechanism. Moreover, we inves-
tigate the effect of the reward amendment and attention mechanism in
achieving coordination thoroughly. Compared to the recently proposed
Colight, 𝛾-Reward series replaces the graph attention with recursion,
decouples the calculation of the whole road networks, and is more
suitable for practical applications.
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Appendix

A.1. Fundamental DRL algorithms

A.1.1. Temporal-Difference Learning
Temporal-Difference Learning (TD learning), proposed by Sutton

(1988), combining with Dynamic Programming (DP) and Monte Carlo
(MC) methods, becomes the core idea of DRL. Like the Monte Carlo
algorithm, it does not need to know the specific environment model and
can learn directly from experience. On the other hand, it also inherits
bootstrapping from DP algorithm, which is the unique feature of TD
learning: predictions are used as targets during learning (Sutton and
Barto, 2018). Monte Carlo simulates (or experiences) an episode until
it ends, then estimates the state value based on the value of each state.
In contrast, TD learning simulates an episode with one step (or several
steps) per action which based on the value of the new state, and then
estimate the state value before execution.

The Q-learning algorithm (Watkins and Dayan, 1992) is a ground-
breaking algorithm. TD learning is used here for off-policy learning.

𝛿𝑡 = 𝑟𝑡+1 + 𝛾 ′ max
𝑎
𝑄
(

𝑜𝑡+1, 𝑎𝑡+1
)

−𝑄
(

𝑜𝑡, 𝑎𝑡
)

where 𝛿𝑡 represents TD-error.

A.1.2. Deep Q-network
Deep Q-network (DQN) is a powerful off-policy algorithm which has

achieved excellent results in many fields since 2015 (Mnih et al., 2015).
It uses a neural network to approximate the Q-value function instead
of tabling.

𝑄
(

𝑜𝑡, 𝑎𝑡
)

← 𝑄
(

𝑜𝑡, 𝑎𝑡
)

+ 𝛼
[

𝑦𝑗 −𝑄
(

𝑜𝑡, 𝑎𝑡
)]

𝑦𝑡+1 = 𝑟𝑡+1 + 𝛾 ′ max
𝑎
𝑄
(

𝑜𝑡+1, 𝑎𝑡+1
)

A.1.3. Double deep Q-network
Q-learning uses max to select the best action, which causes a

Maximization Bias problem. So (Van Hasselt et al., 2016) solved this
by designing a Double Q-learning, it only differs in the calculation of
the target Q value:

𝑦𝑡+1 = 𝑟𝑡+1 + 𝛾 ′𝑄′
(

𝜙
(

𝑜′
)

, argmax
𝑎′

𝑄
(

𝜙
(

𝑜′
)

, 𝑎, 𝑤
)

, 𝑤′
)

A.1.4. Dueling deep Q-network
Another improvement for DQN is Dueling DQN (Wang et al., 2016),

which decomposes the Q network into two separate control streams, a
value function 𝑉 (𝑠), and a state-based action advantage function 𝐴(𝑠, 𝑎).
These two control flows obtain an estimate value of the Q function
through a special aggregating layer.

𝑄(𝑜, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉 (𝑜; 𝜃, 𝛽)+
(

𝐴(𝑜, 𝑎; 𝜃, 𝛼) − 1
||

∑

𝑎′
𝐴
(

𝑜, 𝑎′; 𝜃, 𝛼
)

)

A.2. Pseudocode for 𝛾-Reward series

See Algorithms 1 and 2.
11
Algorithm 1 𝛾-Attention-Reward Algorithm for MARL Traffic Lights
Control
1: Initialize 𝐸 parallel environments with 𝑁 agents
2: Initialize replay memory 𝐷 to capacity 𝑁𝐷
3: Initialize raw replay memory 𝐷𝑟 to capacity 𝑁𝐷 + 𝑛
4: Initialize action-value function 𝑄 with random weights 𝜃
5: Initialize target action-value function 𝑄̂ with weights 𝜃− = 𝜃
6: Initialize attention scores 𝛼𝑖,𝑗
7: 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 ← 0
8: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,𝑀 do
9: Reset environments, and get initial 𝑜𝑖 for each agent 𝑖
0: for 𝑡 = 1, 𝑇 do
1: Select actions 𝑎𝑖 ∼ 𝜋𝑖(⋅|𝑜𝑖) for each agent 𝑖 in each

environment 𝑒
2: Send actions 𝑎𝑖 to all parallel environments and get 𝑜′𝑖 , 𝑟𝑖

for all agents
13: Store (𝑎𝑖, 𝑜𝑖, 𝑟𝑖, 𝑜′𝑖) in 𝐷𝑟
4: 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 +𝑁

15: if 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 ≤ min steps per update + 𝑛 then
16: Replay Buffer Amendment(𝐷𝑟, 𝛼𝑖,𝑗)
17: Update Policies:

Calculate 𝑎𝐵1…𝑁 ∼ 𝜋𝜃̄𝑖
(

𝑜′𝐵𝑖
)

, 𝑖 ∈ 1…𝑁
Calculate 𝑄𝜓𝑖

(

𝑜𝐵1…𝑁 , 𝑎
𝐵
1…𝑁

)

for all 𝑖 in parallel
Update policies using ∇𝜃,𝑖 (𝜋𝜃) and Adam

8: Update target 𝑄 parameters: 𝜃̂ ← 𝜃
9: Update target attention parameters: 𝛼̂ ← 𝛼
0: 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 ← 0
1: end if
2: end for
3: end for

Algorithm 2 Replay Buffer Amendment
1: function ReplayBufferAmendment(𝐷𝑟, 𝛼𝑖,𝑗)
2: for 𝑖 = 1, 𝑁 do
3: 𝑖𝑛𝑑𝑒𝑥 = 𝑙𝑒𝑛(𝐷𝑟) − 𝑛
4: while 𝑖𝑛𝑑𝑒𝑥 > 𝑒𝑥_𝑖𝑛𝑑𝑒𝑥 do
5: (𝑜𝑖, 𝑎𝑖, 𝑟𝑖, 𝑜′𝑖) = 𝐷𝑟,𝑖(𝑗)
6: 𝑅𝑖 = 𝛾-Attention-Reward function(𝑟𝑖, 𝛼𝑖,𝑗)
7: Store (𝑜𝑖, 𝑎𝑖, 𝑅𝑖, 𝑜′𝑖) in 𝐷
8: 𝑗 = 𝑗 − 1
9: end while

10: 𝑒𝑥_𝑖𝑛𝑑𝑒𝑥 = 𝑙𝑒𝑛(𝐷𝑟) − 𝑛
11: end for
12: end function
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