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Abstract— Soft object manipulation poses significant chal-
lenges for robots, requiring effective techniques for state repre-
sentation and manipulation policy learning. State representation
involves capturing the dynamic changes in the environment,
while manipulation policy learning focuses on establishing
the relationship between robot actions and state transforma-
tions to achieve specific goals. To address these challenges,
this research paper introduces a novel approach: a dynamic
heterogeneous graph-based model for learning goal-oriented
soft object manipulation policies. The proposed model utilizes
graphs as a unified representation for both states and policy
learning. By leveraging the dynamic graph, we can extract cru-
cial information regarding object dynamics and manipulation
policies. Furthermore, the model facilitates the integration of
demonstrations, enabling guided policy learning. To evaluate the
efficacy of our approach, we designed a dough rolling task and
conducted experiments using both a differentiable simulator
and a real-world humanoid robot. Additionally, several ablation
studies were performed to analyze the effect of our method,
demonstrating its superiority in achieving human-like behavior.

I. INTRODUCTION

In the context of domestic scenarios, the manipulation
of soft objects using dual arms is a common requirement.
Numerous studies in the field of robotics have focused on
bimanual activities to advance the application of robots in
service-oriented tasks. Examples include folding clothes [1],
coffee stirring [2], and cooking with stir-fry [3]. These tasks
necessitate accurate state estimation of soft objects and the
execution of coordinated bimanual movements. It is crucial
to employ a reliable state representation method that can
robustly capture the changes in the state of soft objects
despite disturbances from environmental factors and sensor
limitations. Additionally, an important practical considera-
tion is the ability to transfer policies learned in simulation to
real-world scenarios, bridging the significant gap between
simulated and real environments. Such capability would
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Fig. 1. Perform a bimanual dough rolling task with a rolling pin on a
CURI robot by using the pre-trained dynamic heterogeneous graph model.

greatly facilitate the practical implementation of simulator-
based learning methods in real-world applications. After
obtaining a compact and concise state information, robots are
required to learn the bimanual manipulation policy to achieve
specific goals. However, the complexity of movements and
the requirement for scene generalization make simple logic
programming inadequate for such tasks. In recent decades,
two mainstream solutions have emerged: Reinforcement
Learning (RL) and Learning from Demonstration (LfD).
However, both approaches have their limitations. Demonstra-
tions provide direct examples of expert policies, enabling
the robot to mimic behavior in a supervised manner. This
approach restricts the robot’s ability to learn object state
representation and discover new skills due to the limited
amount of available data. On the other hand, RL-based
methods allow for extensive interaction with the environment
but often struggle to learn complex or long-horizon tasks
from scratch. In summary, state representation and policy
learning are the primary factors that restrict robots’ ability to
acquire human-like skills, particularly in the domain of soft
object manipulation. Therefore, this paper aims to address
these two challenges simultaneously and in a natural manner
by proposing a suitable approach.

Soft object state estimation and representation, a crucial
challenge in the field of robotics, has garnered significant
attention in the realm of Computer Graphics. Huang et
al. introduced PlasticineLab, a state-of-the-art differentiable
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Fig. 2. The proposed pipeline of soft object manipulation, which contains two parts: dynamic heterogeneous graph policy learning in the simulator with
the guidance of demonstration, and planning and control for deploying on the real-world humanoid robot.

physics benchmark, supported by the DiffTaichi system [4].
PlasticineLab utilizes the MLS-MPM algorithm to simulate
plasticine-like objects. Notably, the differentiable physics
framework provides analytical gradient information, enabling
supervised learning with gradient-based optimization. The
versatility of PlasticineLab has led to numerous studies
focusing on soft object manipulation. For instance, Shi et al.
proposed the utilization of graph neural networks (GNNs)
to learn the particle-based dynamics of soft objects for
model-based planning [5]. These advancements highlight the
potential of employing differentiable physics simulations and
graph neural networks to enhance soft object state estimation
and manipulation strategies in the field of robotics.

Soft object manipulation policy research primarily re-
volves around two approaches: direct imitation from human
demonstration and policy transfer from simulators. The for-
mer involves supervised learning techniques, such as Dy-
namic Movement Primitives (DMP) [6], TP-GMM [7], and
deep learning models [8], to obtain optimal policies by fitting
data from demonstrations. The latter leverages reinforcement
learning (RL) to train robots in simulators like Habitat [9],
Mujoco [10], pyBullet, DiffTaichi [4], and PlasticineLab
[11]. While demonstration provides expert policies and mim-
ics human behavior [3], it may have limitations in learning
object state representation and discovering new skills due
to limited data. Simulators bridge the gap with reality but
struggle with policy transfer. Combining demonstration and
simulation allows for the integration of their strengths and
mitigates their weaknesses [12].

Relational learning offers a unified solution to the above
challenges of soft object manipulation. Geometric informa-
tion of soft objects can be represented as a graph, where robot
end-effectors are abstracted as manipulator nodes to capture
the relationship between manipulation and state change. By
modeling continuous manipulation behavior as the evolution
of dynamic graphs, we can learn robot behavior oriented
towards object state changes. Demonstration data can also be
represented as dynamic graphs, enabling seamless integration
with simulator-based policy learning and overcoming differ-
ences between reality and simulation. This approach provides

a comprehensive framework for robust and adaptable soft
object manipulation in dough rolling task.

This paper presents several key contributions. Firstly,
we propose a Dynamic heterogeneous Graph based model
for learning Goal-oriented deformable manipulation policy
(DGform). This model adopts a unified graph representation
for both state information and policy learning, incorporating
guidance from human demonstrations. Secondly, we provide
a comprehensive pipeline for deploying the pre-trained policy
on a real-world humanoid robot, specifically focusing on the
task of dough rolling. Lastly, we conduct ablation studies
and generalization analysis to demonstrate the superior per-
formance of our proposed method in learning human-like
bimanual skills.

II. DOUGH ROLLING TASK

To evaluate our method, we tackle the challenging task
of bimanual dough rolling. Previous dough rolling research
includes Figueroa et al., who employed a hierarchical frame-
work for automatic task segmentation and represented hu-
man demonstrations using action primitives [13]. However,
such movement primitive-based methods have limitations in
understanding the relationship between robot motions and
object state changes. Calinon et al. discussed generalization
in learning from few demonstrations, presenting a task-
parameterized mixture model and comparing it with other
approaches [14]. It primarily focused on determining the
rolling direction rather than accomplishing the complete
dough rolling task.

In recent dough rolling research, there has been a growing
reliance on differential simulators. Diffskill, for instance,
introduced a method for learning skill abstraction in sequen-
tial dough manipulation tasks. It employed a differentiable
simulator to generate simulated demonstrations and trained
a supervised policy for each dough manipulation primitive
skill [15]. Another notable work proposed a Generative Pre-
trained Transformer (GPT) [16] based world model (Soft-
GPT) for learning the dynamics of dough from a differential
simulator [17]. This model facilitated efficient learning of
diverse dough manipulation tasks including dough rolling,



but it only conducted experiments in the simulator.

III. SOFT OBJECT MANIPULATION POLICY LEARNING
VIA DYNAMIC HETEROGENEOUS GRAPH

In this section, we will introduce the key concepts and
components used in our proposed methods. The definitions
of important symbols are provided in Table I. The overall
soft object manipulation pipeline is illustrated in Fig. 2,
consisting of two main parts: (1) dynamic heterogeneous
graph policy learning in the simulator with the guidance of
demonstration, and (2) planning and control for deploying
the pre-trained model on the real-world humanoid robot.

A. Represent soft objects and manipulator as a heteroge-
neous graph

Recent studies have started utilizing graph-structured data
and graph neural networks to model soft object manipulation
policy learning. For instance, some research has focused
on predicting action effects of a bag using graph-based
approaches [18], learning the dynamics of soft objects [5].

Graphs serve as efficient and compact data structures for
representing non-Euclidean data, capturing both semantic
and geometric information through their nodes and edges.
To address the challenge of abstracting the state of a dough
object, which lacks distinct characteristic points unlike soft
objects such as clothes [1], we employ a robust solution that
minimizes interference with subsequent policy learning. In
this study, we utilize standard image processing techniques to
achieve this abstraction. Initially, we segment the dough from
the operation board using a color threshold and subsequently
determine the center of the segmentation contour. From this
contour center, we establish four lines with equal angular
spacing and calculate eight focal points between them and
the contour. These focal points serve as position features
for the object’s boundary nodes. Alongside the center node,
we construct a 9-node Vo graph to represent the object’s
state. Each node in the graph is associated with a position
feature and a corresponding depth feature obtained from
depth observations. To provide clarity, Fig. 2 illustrates an
example with five object nodes. The graph includes edges
connecting all object boundary nodes to the center node,
while the boundary nodes are connected solely to their
two immediate neighbors. This graph-based representation
facilitates effective modeling of the dough object’s state and
its subsequent utilization in the research field of robotics.

As shown in the graph block in Fig. 2, except for the
object sub-graph SGt, the dual end-effectors are added as
manipulator nodes, together constructing the complete het-
erogeneous graph Gt. Heterogeneous graph refers to graphs
that contain different types of nodes and also different types
of edges between nodes. Therefore, a heterogeneous graph
representation allows us to learn more relationships as we
expected. The manipulator node features are their poses with
respect to the board coordinate system. The edges between
the manipulator and object nodes are fully connected.

TABLE I
DEFINITION OF SYMBOLS

Symbols Definition

D The dimension of state
O The order of the controller
T Time horizon, t ∈ [0, T ]
ot The state of the object at time t
og The goal state of the object
at The Cartesian pose of robot dual end-effectors
Vm,Vo Manipulator nodes and object nodes
Emo, Eoo Edges between Vm and Vo, and among Vos

XV t, XE t
The attribute matrices of nodes and edges
at time t

Gt = (Vt, Et) The static graph at time t
XGt = (Vt, Et,

XV t, XE t)
The static graph at time t with attributes

SGt, SXGt The static object sub-graph at time t

ζ = [ζ⊺1 , . . . , ζ
⊺
T ]

⊺ Demonstrated bimanual trajectory,
each ζt = [ζ

(l)
t

⊺
, ζ

(r)
t

⊺
]
⊺
∈ R2DO

SXGζt Demonstrated static object sub-graph at time t

B. Learn state change as the evolution of the dynamic graph

After gaining the graph abstraction of object and manip-
ulator states at each time step, we then consider describing
the dynamic evolution of the state and the corresponding
manipulation trajectory. Each static graph Gt is a snapshot
of the dynamic graph evolving from time 0 ∼ T . Thanks to
the nature of the heterogeneous graph, we can define several
different types of graph convolution operations on this graph.
As shown in Fig. 2, we learn the goal-oriented policy (Equ.
1a), transition function and object dynamics (Equ. 1b) and
value function (Equ. 1c) in a unified dynamic heterogeneous
graph model.

ât+1 ← X̂Vm,t+1 = πGraphConv(XVm,t , XVo,t |XSGg
) (1a)

ŜGt+1 ← X̂Vo,t+1
= TrGraphConv(XVm,t

, XVo,t
) (1b)

v ← V(X̂Vm,t+1 , X̂Vo,t+1) (1c)

The goal-oriented policy takes the graph abstraction of
the goal state (the semitransparent graphs in Fig. 2) as a
condition and learns to obtain the hidden feature of the
manipulator node at the next time step through the graph
feature of the current state. Similarly, another Graph Convo-
lutional Network (GCN) [19] is set for predicting the next
hidden feature of object nodes. These hidden features are
transformed to the next action ât+1 and next object state
prediction ŜGt+1 by two additional feed-forward networks.
The value of the current policy is estimated upon these
hidden features as well. Specifically, we first perform a mean
aggregation of these heterogeneous hidden features and then
feed it to another feed-forward network.

Since several sub-tasks exist simultaneously, the loss func-
tion is composed of several parts. Referring to RL methods,
we calculate the advantage function based on the value
estimation and the actual return and generate the value loss
and the action loss. Another term is a supervised loss for
learning an accurate dynamic model.

Lt(θ) = E[LCLIP
t + c1LV F

t + c2LDyn
t − c3S[π](ŜGt)]

(2)



C. Demonstration guidance during the policy learning

The goal-oriented policy has shown the superiority of
integrating the goal state in a compact dimension via graph
representation. Another advantage is combining the fully
explore-based methods with learning from demonstration
methods, adding the demonstration as a policy learning
guidance. This topic is studied in the offline RL field. The
intention of CQL is to lower-bound the actual value of
Q function by introducing a conservative term, avoiding
the common value overestimation problem in offline RL.
This term minimizes values under an appropriately chosen
distribution over state-action tuples and then further tightens
this bound by incorporating a maximization term over the
data distribution [20]. Since DGform has not been extended
to an actor-critic form, a state-action value estimation is not
available. Thus, we adopt the current policy distribution to
evaluate demonstration state-action pairs.

LImi
t (ζ|θ) = −

∑
ζ

πθ(ζt|SXGζt) (3)

As we expect, demonstration guidance should not be
a strong supervision constraint but should leave room for
exploration. Therefore, we further add a self-adjusting term
to convert Equ. 3 to a Lagrange version.

θ̂k+1 ← argmin
θ

max
α

E
[ (

αLImi
t (ζ|θ)− τ

)
+ LCLIP

t

+ c1LV F
t + c2LDyn

t − c3S[π](ŜGt)
] (4)

where τ is the imitation threshold, α is a self-adjusting
Lagrange coefficient of conservative term. More specifically,
if the difference between the expected value and the threshold
τ is less than 0, then α will tend to 0. Conversely, α will
increase, and the weight of the conservative term in the
entire loss calculation will also increase. This version intends
to adaptively change the supervision intensity according to
the deviation between the rollout and demonstration actions
while leaving room for exploration in the vicinity of the
demonstration.

D. Model-based rollout by the learned object dynamics

Although directly using image processing methods like
segmentation to represent soft objects in a 2-dim graph
simplifies our reliance on the visual front-end, it also brings
some practical problems. It is challenging to represent the
state of the dough by this method when occluding by other
objects, like the rolling pin and robot hands. We certainly can
also use methods similar to RoboCraft [5] to analyze the oc-
clusion of objects by setting up cameras with multiple views
in their experiments. However, information incompleteness
is the most common in real scenarios. A more appropriate
and robust solution is to predict actions over a period of time
through the learned model when the state is unknown for part
of the period. Formally, for a short horizon t ∈ tk ∼ tk+H ,
since the step-by-step interaction with the environment is
not available, the proposed model alternately generates the

features of object and manipulator nodes.

ât+1 ← X̂Vm,t+1
= π(X̂Vm,t

, X̂Vo,t
|XSGg

) (5a)

ŜGt+1 ← X̂Vo,t+1
= Tr(X̂Vm,t

, X̂Vo,t
) (5b)

Then we can get a sequence of predicted actions â =
[âtk . . . âtk+H ] and their corresponding effect prediction. The
simulator performs these actions sequentially to obtain the
actual feedback (return and next state sequence). Further-
more, the loss function needs to be modified to a period
form accordingly.

E. Bimanual Trajectory Planning

The action output of DGform policy is path waypoints of
dual end-effectors, which is inadequate to perform directly
on robots with high frequencies (1000Hz in control loop
for the humanoid robot in this paper). Thus, a trajectory
planning module is required. Besides, since the dual end-
effectors has a fixed relative relationship, coordination needs
to be considered in the trajectory planning. Here we use Bi-
manual Relative Parameterization (Bi-RP) [21] for modeling
the coordination and generating bimanual trajectories with
Linear Quadratic Tracking (LQT) [22].

Formally, the coordination is defined as another frame
that takes the trajectory of the other arm as dynamic
task parameters and represents the relative relationship as
GMM. The relative motion between dual end-effectors is
described as ζ(c) = A−1

c,t

(
(ζ(l) − ζ(r))− bc,t

)
and repre-

sented by {π(k),µ
(k)
c ,Σ(k)

c }Kk=1. For each end-effector, the
task-specific GMM obtained by PoE

N
(
ν̂(k), Γ̂

(k)
)
∝

P∏
j=1

N
(
ν
(k)
j ,Γ

(k)
j

)
· N

(
ν(k)
c ,Γ(k)

c

)
(6)

where ν
(k)
c = Ac,tµ

(k)
c + bc,t,Γ

(k)
j = Ac,tΣ

(k)
j A⊤

c,t.
Ac,t, bc,t are transformation matrices. P is the number of
reference frames. More details can be found in [21].

IV. EXPERIMENTS

A. Setup

Simulation The simulation environment is built on top
of PlasticineLab [11], with a particle-based dough and a
rolling pin. We set up cameras with multiple views to show
how the rolling pin and dough change in 3-dim space, while
the RGB-D observation for policy learning is obtained from
the top-down view. To shorten the learning process while
maintaining graph abstraction performance, the resolution of
the camera was set to (128, 128).

Real-world experiments The pre-trained model was de-
ployed on the Collaborative dUal-arm Robot manIpulator
(CURI) robot, a self-designed bimanual human-like robot
equipped with two 7 DoF arms and a 3 DoF torso. CURI
utilizes a Cartesian motion controller to execute desired
Cartesian space end-effector trajectories by generating joint
torques. In real experiments, feedback is provided through
first-person perspective observations captured by a single
ZED 2i camera embedded in CURI’s head.



Fig. 3. The learning performance between baselines and DGform is compared from rewards to three evaluation metrics (SDF, density, and IoU) with the
help of the differentiable simulator. The comparison between PPO-based methods demonstrate the effective of graph representation, while three DGform
variants show the feasibility of learning policy via graph and the role of demonstration guidance and Lagrangian terms.

Fig. 4. An example of DGform inference in the simulator. The short horizon H in the simulation is set to be 50. The rolling pin will be reset to its initial
state after each short horizon and inferred based on the current deformation and the goal state. The first row shows the sequential rolling pin movements
sample, and the second is the corresponding visualization of object graph abstractions. Red nodes are boundary nodes, and black nodes are center nodes.

Evaluation metric Since the full state of particles is
available in the simulator, we compare the Signed Distance
Field (SDF), density, and Intersection over Union (IoU)
between the current state and the target state.

Network details The model consists of two-layer hetero-
geneous Graph Convolutional Neural network and a two-
layer MLP-based policy learning network combining CQL
with PPO, as described in III-C.

The preprocessing of the multimodal demonstration data
and the implementation of the LQT method depend on the
Rofunc package, a full-process python package for robot
learning from demonstration published by our lab [23]. It
provides numerous interfaces for demonstration collection
and processing, baseline LfD methods, planning methods,
and Isaac Gym-based simulators.

B. Demonstration collection

To incorporate human demonstration during policy learn-
ing, we adopt a comprehensive multimodal data collection
approach, including visual and motion capture information.
Since our focus is on generating bimanual Cartesian trajec-
tories for the rolling pin handles, the whole-body human
motion is simplified to dual hand motions. The spatial
relationship between the demonstrator hands and the worktop
was recorded using the Optitrack system. Specifically, two
groups of markers are attached to the demonstrator’s wrists,
while four markers are fixed on the board to indicate the
position of worktop, as shown in the left side of Fig. 2. To

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT SCENES

Methods Reward IoU SDF Density

PPO-f∗ - - - -
DiffSkill 63.7 0.0733 1.5307 327.9
PPO-Ho 509.3 0.3883 0.9056 284.5
PPO-He 629.5 0.4203 0.6422 271.9
DGform† 756.1 0.5573 0.6223 266.4
∗ In any case, the full particle states are the same.
† The three variants of DGform share the same state representation, so

here only the vanilla DGform is added as a representative.

capture the dynamic changes in the dough state, we employ
ZED 2i cameras, which provide RGB-D data. By synchroniz-
ing and abstracting the data from these sensors as a sequence
of heterogeneous graphs, following the techniques described
in Section III-A, we create a demonstration dataset. This
dataset is utilized in batch to calculate the imitation loss
LImi
t as defined in Equation 3. During the demonstrations,

the demonstrator was instructed to roll the dough towards a
large circular shape within 10 rollouts.

C. Policy learning performance

An inference example of the DGform rolling policy is
shown in Fig. 4, the first row shows the sample of sequential
rolling pin movements, and the second row is the correspond-
ing visualization of graph abstractions.

Baselines The learning performance comparison is mainly
divided into two categories, exploring the impact of state
representation (full particle state, RGB-D and graph) and the



Fig. 5. The real robot experiment consists of five rollouts. Each time at the initial pose, the camera in CURI’s head captured an RGB-D image of the
dough, then it was converted into a heterogeneous graph through graph abstraction and passed as input to the pre-trained DGform model. The model
generated a path with 50 waypoints, which was then transformed into a smooth dual-arm trajectory with 10,000 points by bimanual LQT. The trajectories
were executed by the Cartesian motion controller embedded in the CURI. The first row shows the recording from a third perspective, while the last two
are observations from the first-person perspective camera.

impact of policy learning methods (RL, Lfd, or mixed via
DGform).

• PPO with the full state (PPO-f): Use full particle states
as the observation of PPO.

• PPO with RGB-D state (DiffSkill): Use RGB-D images
from a top-down view as the observation of PPO, like
the primitive skill learning model used in DiffSkill [15].

• PPO with Homogeneous Graph state (PPO-Ho): Con-
vert the RGB-D image to a homogeneous object sub-
graph, and use it as observations of PPO.

• PPO with Heterogeneous Graph state (PPO-He): Con-
vert the RGB-D image to a heterogeneous graph, and
use it as observations of PPO.

Except for the PPO-based baselines, we provide three
variants of DGform: vanilla DGform, DGform with imita-
tion (DGform-i), and DGform with imitation and Lagrange
(DGform-il). It is worth mentioning that all baselines do
not have a model-based module and need to interact with
the environment step-by-step. In contrast, DGform and its
variants can rollout a trajectory in a period with the help of
the learned model (Sec. III-D). Without immediate interac-
tion, the performance might be influenced, but it will also
be robust and practical in real-world scenarios.

From Fig. 3, we can figure that the performance is better
when reducing the state dimension from full particle state
or RGB-D to compact graph state. Among them, PPO with
full particle state obtains the worst performance because it
is intractable for the network to process tens of thousands
of dimensional inputs. In the graph-based method, the het-
erogeneous graph adds the information of the manipulator.
It thus has additional graph convolutional networks to ac-
quire more relations implied in the soft object manipulation.
Comparing these four PPO-based methods demonstrates that
graph abstraction is sufficient to represent the deformation
of objects and is an effective way of state representation.

On the other hand, policy learning with dynamic graph

(DGform) surpasses the PPO-based methods at a slow but
robust pace. The inefficiency of this method is primarily
affected by the non-interactive model-based rollout since
there is little actual interaction with the environment. This
makes sense for deploying real robots but also runs the risk of
difficult convergence. Thus, we introduce the demonstration
guidance, which shows a solid guiding effect in the early
stage of learning, driving the policy in the direction of
demonstration and avoiding wasting time in meaningless
state-action pairs. However, DGform-i without Lagrange
cannot converge to normal performance. This is likely con-
strained by demonstration data taken from different envi-
ronments. This issue has been addressed by modifying it to
a Lagrange version, evaluating the weight of demonstration
guidance items in policy updates according to the actual
policy dynamically. Finally, the Lagrange version DGform
with demonstration guidance achieves the best performance
most efficiently.

D. Generalization analysis

Another essential indicator for evaluating robot skill learn-
ing is whether it is easy to transfer to unseen scenarios. With
the help of differentiable simulators, we designed general-
ization experiments with different initial states or camera
positions. These two variables are generated randomly in a
reasonable range. Their average values of evaluation metrics
are shown in Table II. The results were inferred from pre-
trained baselines and DGform models. It is easy to figure
out that methods with graph state representation have better
transfer ability. Moreover, the manipulation performance of
DGform does not change much as the environment changes.

E. Real robot dough rolling

The process of deploying a pre-trained simulated policy
on a real-world robot is depicted in the right side of Fig. 2.
At the start of the experiment, the initial state of the dough is
captured by the embedded ZED 2i camera in CURI’s head,



which provides an RGB-D image. This information is ab-
stracted as an object subgraph using the technique described
in Section III-A. To determine the relative pose of the robot
end-effectors with respect to the center of the worktop, we
employ coordinate transformations between the robot hands
and the camera. To ensure consistency with the simulator,
the poses of the robot end-effectors are set to be the same
as those used in the simulated environment, simplifying
the impact of initial poses on the pre-trained model. As
discussed in Section III-D, to mitigate occlusion of the end-
effector and rolling pin from the first-person view camera
during manipulation, a model-based rollout policy is adopted
during training in the simulator. Consequently, the entire
manipulation process is divided into multiple rollouts. After
each rollout, visual feedback is captured and provided to
the policy, which generates the bimanual trajectories for the
subsequent rollout based on this feedback. The experimental
results are presented in Fig. 5, showcasing the performance
of the deployed policy on the real-world robot.

V. DISCUSSION

It is worth noting that this paper only focuses on the
two-dimensional shape change of dough. Point cloud in-
formation and three-dimensional graph neural network will
be introduced, like SoftGPT [17], to realize the complete
deformation manipulation on a real humanoid robot.

VI. CONCLUSION

This paper proposes a dynamic heterogeneous graph-based
dough manipulation policy learning model and elaborates
its pipeline to deploy the model on a humanoid robot to
achieve a dough rolling task with a rolling pin. We show
the superiority of using a unified graph form, which can
learn the goal-oriented policy and object dynamics and
integrate the demonstration guidance simultaneously without
the interference of environmental change. Compared with
several baseline methods, the proposed DGform with a
compact representation and demonstration guidance achieves
a human-like dough rolling behavior. The generalizations of
these methods are also analyzed, which show the robustness
of DGform against environmental change. Finally, a real-
world experiment was conducted on a CURI robot, aided by
bimanual LQT with coordination.
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