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Abstract— Human bimanual manipulation can perform more
complex tasks than a simple combination of two single arms,
which is credited to the spatio-temporal coordination between
the arms. However, the description of bimanual coordination
is still an open topic in robotics. This makes it difficult to
give an explainable coordination paradigm, let alone applied
to robotics. In this work, we divide the main bimanual tasks
in human daily activities into two types: leader-follower and
synergistic coordination. Then we propose a relative parameter-
ization method to learn these types of coordination from human
demonstration. It represents coordination as Gaussian mixture
models from bimanual demonstration to describe the change
in the importance of coordination throughout the motions by
probability. The learned coordinated representation can be
generalized to new task parameters while ensuring spatio-
temporal coordination. We demonstrate the method using
synthetic motions and human demonstration data and deploy
it to a humanoid robot to perform a generalized bimanual
coordination motion. We believe that this easy-to-use bimanual
learning from demonstration (LfD) method has the potential to
be used as a data augmentation plugin for robot large manipula-
tion model training. The corresponding codes are open-sourced
in https://github.com/Skylark0924/Rofunc.

I. INTRODUCTION

Humanoid robots with high redundancy are expected to
perform complex manipulation tasks with human-like be-
havior. However, ensuring the coordination between multiple
degrees of freedom is still an open problem in robotics.
This is often the key to the success of most human daily
activities, like stir-frying, pouring water, sweeping the floor,
and putting away clothes. Thus, it is necessary to provide
an explainable paradigm to describe and learn coordination.
Learning the manipulation of a humanoid robot by observing
human motion and behavior is a straightforward idea [1], but
the technology behind it is still challenging. It needs to un-
derstand human motion data and design a bridge connecting
humans and robots. In this work, we focus on the learning
and generalization of bimanual coordination motions from
human demonstration.
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Fig. 1. The two main bimanual coordination manners in human daily
activities are leader-follower and synergistic coordination. Learning these
coordination manners from human demonstration requires the ability to
extract the implicit coordination information from motion data and deploy
it into new situations with different task parameters.

Learning from demonstration (LfD) is a type of machine-
learning approach that allows robots to learn tasks or skills
from human demonstrations. Instead of programming robot
motions with explicit instructions that are defined manually
for each task [2][3], LfD enables robots to learn skills
by observing human performance [4]. It is implemented
by the following processes: recording human demonstration
data, learning the representation of multiple demonstrations,
transferring the data to the workspace of robots, and finally
designing a controller for generating the smooth trajectory
and its corresponding control commands. LfD has become an
increasingly popular approach for training robots, as it can
be faster and more efficient than traditional programming
methods. It also allows robots to learn tasks that may be
difficult to program explicitly, such as those that involve
complex movements or interactions with a dynamic environ-
ment. Meanwhile, another important feature of LfD is that it
enables robots to adapt to new or changing environments [5],
as they can learn from demonstrations in different settings
and apply that knowledge to new situations.

Bimanual robots are much more complex to learn from
demonstration than single-armed robots that can be taught
by kinesthetic teaching [6]. Some previous works tried to
combine the trajectories taught multiple times to realize the
kinesthetic teaching of highly redundant robots [7]. However,
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Fig. 2. The whole framework is illustrated based on a pouring task, which is a specific leader-follower example. It starts from the collection process, where
the coordinated motion of human arms and the displacement of objects were recorded by Optitrack. Then the coordinated motions were represented by
TP-GMM with relative parameterization, and the task-specific GMM was reconstructed in a leader-follower manner (given a pre-generated leader motion
to construct the corresponding follower motion representation). Follower motion can be generated by LQT (with coordination matrix) for robot execution.

this also makes the demonstration data less reliable. Recently,
several works proposed feasible frameworks for learning
directly from human demonstration. Krebs et al. provided a
taxonomy of human bimanual manipulation in daily activities
by focusing on different types of coordination [8]. Liu et
al. regarded the leader-follower coordination as sequence
transduction and designed a coordination mechanism based
on Transformer model to achieve a human-level stir-fry task
[9]. Besides, offline reinforcement learning algorithms have
been used to let robots bimanual coordination tasks from
offline demonstration dataset [10], allowing the robot to learn
the most efficient and effective ways to coordinate its arms
for a given task.

In this work, we aim to propose an explainable paradigm
for learning generalized coordination from demonstration.
The main contributions can be summarized as follows:

• Coordination parameterization: We propose a relative
parameterization method (BiRP) for extracting the co-
ordination relationship from human demonstration and
embedding it into the motion generation of each arm.

• Leader-follower motion generation: We provide con-
ditional coordinated motion generation for bimanual
tasks with different roles in arms, allowing us to gen-
erate the follower’s motion according to the leader.

• Synergistic motion generation: For tasks where there
is no obvious role difference between arms, we also
provide a motion generation method that enables both
arms to adapt to new situations synergistically.

II. CONSTRUCT BIMANUAL COORDINATION BY
RELATIVE PARAMETERIZATION

The definition of relative parameterization is a way to
parameterize the relative relationship between bimanual arms
and embed this relationship into the representation of each
arm. The relative relationship can have many forms, which

TABLE I
DEFINITION OF SYMBOLS

Symbol Definition

D State dimensions
O Order of the controller
P Number of reference frames
H Number of arms, h refers to left or right arm here
T Time horizon, t ∈ [0, T ]
K Number of Gaussian components in a mixture model
ξ Demonstration motion, ξ ∈ RDT

ζj Motion in frame j, ζ =
[
ζ⊤1 , . . . , ζ⊤T

]
∈ RDOT

u Control command, u =
[
u⊤
1 , . . . , u⊤

T−1

]
∈ RD(T−1)

x Robot motion, x =
[
x⊤
1 , . . . , x⊤

T

]
∈ RDT

Q The required tracking precision matrix
R The cost matrix on control command

depend on task-specific coordination characteristics. For ex-
ample, if bimanual arms are asked to grasp the same object
simultaneously and keep the hold until it is placed, the
relative relationship can be the relative displacement of end-
effectors. The definitions of symbols are listed in Table I.

In this section, we first briefly introduce the fundamental
learning from demonstration method used in uni-manual sce-
narios (Sec. II-A), which consists of two parts: demonstration
representation and motion reproduction or generation. We
add the concept of relative parameterization to these two
parts so that both the process of representation learning
(Sec. II-B) and the process of control (Sec. II-C) take
into account the bimanual coordination characteristics in
the demonstration data. These two methods can be used
independently or jointly. A feasible weighting approach is
also proposed to increase the importance of coordination
characteristics in the representation and control (Sec. II-D).
The whole framework that is illustrated by a leader-follower
example is shown in Fig. 2.
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A. Demonstration Representation and Motion Generation
Learning from demonstration method is a bridge between

humans and robots, which is required to have the ability
to extract the characteristics of human skills, plan the tra-
jectories, and control the robot to perform similar skills.
Thus, it is necessary to combine human skill learning and
robot motion planning and control together in the same
encoding approach. A popular way is to link them in the
form of probability, like Hidden Markov Model (HMM) and
Gaussian Mixture Model (GMM). Besides, considering that
the application scenarios of service robots are unstructured
and need to adapt to changing situations, a class of task-
parameterized models is proposed to address this problem
[11]. The task parameters are variables describing the task-
specific situation, like the position of an object in a pick-and-
place task. By contrary, some task-independent information
can also be extracted from the demonstration data, which
reflects the nature of the skill itself, namely skill parameters.
The concept of task-parameterized models is to observe
the skill in multiple frames, like from starting points and
ending points, and describe the impedance of the systems by
variations and correlations with a linear quadratic regulator,
which can then be used to control the robot.

Task-parameterized Gaussian Mixture Model (TP-GMM)
is a typical method that probabilistically encodes datapoints,
and the relevance of candidate frames P by mixture models,
which has good generalization capability [12]. Formally, if
we define the task parameters as {bj ,Aj}Pj=1, the demon-
strations ξ can be observed as ζj = A−1

j (ξ − bj) in
each frame j. These transformed demonstrations are then
represented as GMM {π(k), {µ(k)

j ,Σ
(k)
j }Pj=1}Kk=1 by log-

likehood maximization, where π(k) refers to prior probability
of k-th Gaussian component, µ(k)

j and Σ
(k)
j refer to mean

and covariance matrix of the k-th Gaussian in frame j. We
can regard these Gaussian components in multiple frames as
skill parameters that can be transferred following the change
of task parameters. For instance, if a new situation is given
by task parameters {b̂j , Âj}Pj=1, a new task-specific GMM
can be generated by Product of Expert (PoE):

N
(
ν̂(k), Γ̂

(k)
)
∝

P∏
j=1

N
(
ν
(k)
j ,Γ

(k)
j

)
(1)

where ν
(k)
j = Ajµ

(k)
j + bj ,Γ

(k)
j = AjΣ

(k)
j A⊤

j .The result
of the Gaussian product is given analytically by

Γ̂
(k)

=

(
P∑

j=1

Γ̂
(k)

j
−1

)−1

, ν̂(k) = Γ̂
(k)

P∑
j=1

Γ
(k)
j

−1ν
(k)
j (2)

For generating robot motion from GMM, optimal control
methods like Linear Quadratic Regulator (LQR) and Linear
Quadratic Tracking (LQT) can be used as planning and
control methods. Here we give the classical form of LQT
as follows:

cost = (ν̂ − x)⊤ Q (ν̂ − x) + u⊤Ru (3)

where ν̂ is the mean matrices of the task-specific GMM
obtained by the previous PoE process.

Assume that the system evolution is linear,

xt+1 = Asxt +Bsut (4)

where As,Bs are coefficients for this system. Then, the
relationship between the control command and the robot
states can be described in the matrix as x = Sxx1 + Suu,
where Sx ∈ RDT×D and Su ∈ RDT×D(T−1) are the matrix
form combination of As,Bs. More details can be found in
the appendix of [12].

Here we just consider an open loop controller, which
solution can be given analytically by

û =
(
S⊤
u QSu +R

)−1
S⊤
u Q (ν̂ − Sxx1) (5)

with a residual as Σ̂u =
(
S⊤

uQSu +R
)−1

.

B. Representation with Relative Parameterization

In the bimanual setting, coordination is reflected at the
data level as some characteristics of the relative motion
of the arms. For instance, for a bimanual box-lifting task,
this characteristic manifests itself as the arms move from
free movement to a fixed relative relationship and maintain
this relationship for a certain time frame. For a leader-
follower task like stir-fry [9], the characteristic refers to the
following arm (holding the spoon) motion, and its periodicity
is determined with reference to the leading arm (holding the
pot). In this work, instead of pre-defining the roles between
the arms (as leader or follower), we aim to describe the
relative relationship between the arms in a more general way:
let the arms parameterize each other.

Formally, we define another frame that takes the trajectory
of the other arm as dynamic task parameters and represents
the relative relationship as GMM as well. Different from
the observation perspectives built with a fixed pose, the
transformation matrices Ac,t, bc,t are dynamic that change
with the motion of the other arm. The relative motion
is described as ζc = A−1

c,t (ξ − bc,t) and represented by
{π(k),µ

(k)
c ,Σ(k)

c }Kk=1. For each arm h, the task-specific
GMM obtained by PoE

N
(
ν̂(k), Γ̂

(k)
)
∝

P∏
j=1

N
(
ν
(k)
j ,Γ

(k)
j

)
· N

(
ν(k)
c ,Γ(k)

c

)
(6)

where ν
(k)
c = Ac,tµ

(k)
c + bc,t,Γ

(k)
j = Ac,tΣ

(k)
j A⊤

c,t.
Such a relative parameterization entangles the represen-

tation of bimanual arms together, letting them consider
each other by constructing time-varying mutual observing
perspectives. This brings two useful functions:

• Generate the motion of one arm based on a given motion
of the other one in a leader-follower manner.

• Generate bimanual motions to adapt to new situations
simultaneously in a synergistic manner.

For instance, if the left arm motion ξl is pre-defined or
adjusted to new situations by other methods like Dynamic
Movement Primitive (DMP) in [9], a corresponding right
arm motion that considers the spatial-temporal coordination
implicit in the demonstration can be generated by gaining
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Fig. 3. The upper and lower rows show the effect of the proposed relative parameterization method on bimanual coordination learning with 2-dim and
3-dim synthetic data, respectively. In each example, three synthetic bimanual motions are given as demonstrations and use the relative parameterization
method to extract and construct a coordination relationship. The right column is the motion result under the new task parameters generated by the proposed
method, which are compared with motion generation without coordination (trajectories in light colors).

the dynamic relative parameters Ac,t, bc,t from ξl. Then we
can obtain a task-and-coordination-specific GMM of the right
arm for further motion generation and control.

For generating bimanual motions synergistically, since the
bimanual motions are unknown at the beginning, the relative
parameterization cannot be established. Thus, we first use the
product of GMMs in other reference systems to generate the
independent motions of arms and then use these motions
as the relative frame of the other arm to embed learned
coordination iteratively.

C. Control with Relative Parameterization
Coordination relationships can also be embedded when

generating trajectories and corresponding control commands
from GMM. Let the cost function of the vanilla LQT con-
troller in Equ. 3 be Cvanilla. The composition cost function
that takes coordination into account can then be written as

C =

H∑
h

Ch
vanilla + (νc − xc)

⊤ Qc (νc − xc) (7)

By setting a similar linear system like Equ. 4, the compo-
sition cost function can rewrite the cost function as

C =

H∑
h

[ (
ν̂h
u − uh

)⊤
Ωh

u

(
ν̂h
u − uh

)
+ uh⊤

Rhuh
]

+ (νu,c − uc)
⊤ Ωu,c (νu,c − uc)

(8)

where ν̂h
u = S−1

u

(
ν̂h − Sxx1

)
and Ωu = S⊤

uQSu. ν̂u,c

and Ωu,c share the similar transformation.
Since there exists multivariate (uh,uc), we cannot directly

change this sum of quadratic error terms into PoE. Thus,

we set a unified vector U ∈ RDT×H for representing
the control command of the whole system, and a binary
coordination matrix C ∈ RDT×DTH ,C = [C1, . . . ,CH ].
For convenience, we set [Ch] = [0, . . . ,Ch, . . . ,0], then we
can continue to rewrite the cost function as

C =

H∑
h

[ (
ν̂h
u − [Ch]U

)⊤
Ωh

u

(
ν̂h
u − [Ch]U

)
+U⊤[Ch]⊤Rh[Ch]U

]
+ (νu,c −CU)⊤ Ωu,c (νu,c −CU)

(9)

Set Ωh
U = [Ch]⊤Ωh

u[C
h], Rh

U = [Ch]⊤Rh[Ch], ν̂h
U =

[Ch]−1ν̂h
u, νU,c = C−1νu,c, the composition cost function

is simplified as

C =

H∑
h

[ (
ν̂h
U −U

)⊤
Ωh

U

(
ν̂h
U −U

)
+U⊤Rh

UU
]

+ (νU,c −U)⊤ ΩU,c (νU,c −U)

(10)

Then we can finally change this sum of quadratic error
terms into PoE

N
(
Û , Σ̂U

)
∝

H∏
h

[
N
(
0,Rh

U

−1
)
N
(
ν̂h
U ,Ω

h
U

−1
)]

N
(
νU,c,ΩU,c

−1) (11)

The result can be written as

Σ̂U =

(
H∑
h

[
Ωh

U +Rh
U

]
+ΩU,c

)−1

Û = Σ̂U

(
H∑
h

Ωh
U ν̂

h
U +ΩU,cνU,c

) (12)
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Fig. 4. This figure shows the effect of the proposed relative parameterization method in the real bimanual robot manipulation with the example of
palletizing. The task parameters in the robot execution process are different from those in human demonstrations, which reflects the generalizability of the
proposed method. Meanwhile, the ability to maintain the synergistic coordination in generalized motions is the core contribution of this work.

By using the binary coordination matrix C, we can extract
the coordinated control commands and motions from Û .

D. Weighted Relative Parameterization

A feasible variant of the above methods is to introduce
weight coefficients σ to adjust the influence of coordination
relationship in representation and control.

For the GMM representation,

N
(
ν̂(k), Γ̂

(k)
)
∝

P∏
j=1

N
(
ν
(k)
j ,Γ

(k)
j

)
·
[
N
(
ν(k)
c ,Γ(k)

c

)]σ
(13)

For the LQT controller,

Σ̂U =

(
H∑
h

[
Ωh

U +Rh
U

]
+ σ ·ΩU,c

)−1

Û = Σ̂U

(
H∑
h

Ωh
U ν̂

h
U + σ ·ΩU,cνU,c

) (14)

III. EXPERIMENTS

A. Setup

The effectiveness of the proposed method is illustrated
by learning through both synthetic motions and real demon-
stration motions. Some pre-designed coordinated motions
can show the coordination explicitly, which is meant to
demonstrate the performance of the method.

Synthetic motions: The synthetic motions were created
via Bézier curves, where bimanual arms depart from a
distance and meet at the same point. This kind of motion
often occurs in some daily activities that require both arms
to grasp, carry or pick up something simultaneously. We
provide both two-dimensional and three-dimensional data to
show the dimension scalability, as shown in Fig. 3.

Real demonstration motions: We also provide demon-
strations of two real tasks to show the effect in bimanual
robot manipulation. The palletizing example shown in Fig.
4 represents a class of synergistic coordinated motions and

tasks, while the pouring example shown in 2 is a typical
bimanual coordination task in the leader-follower manner.

B. Demonstration collection

The human demonstration data was collected via Opti-
track. The demonstrator attached two groups of markers on
his hands for detection by Optitrack. Each group of markers
contains four individual markers, which are required to
determine the pose of each arm. These four markers will be
detected via six Optitrack cameras to record two end-effector
trajectories with both position and orientation. We chose the
poses from the centers of each marker group to reproduce
human bimanual demonstration motions. In addition, the
box and the two cups each have a set of four markers for
recording object motions. The raw data were pre-processed
by our open-source toolbox [13] to extract the valuable
information and separate it into multiple demonstrations
visually. Each demonstration will have seven pose values for
each marker group.

C. Coordination learning performance analysis

The goal of synthetic motions is that bimanual arms should
meet in the same pose, whether in 2-dim or 3-dim. As shown
in the left column of Fig. 3, we provide three bimanual
motions as demonstrations for each synthetic example. These
motions start and end from different positions but move in
a similar style. The middle column, with multiple small
figures, shows the process of using the proposed relative
parameterization method. We use three observation frames
to parameterize the motions of each arm, from the start
points, endpoints, and a dynamic relative observation frame
depending on the other arm. We can extract and construct
coordination relationships from this parameterization from
demonstration data. The parameterized coordination is then
used in motion generation and control in new situations with
different task parameters. Keeping the same coordination re-
lationship in these generalized motions is required to achieve
some specific bimanual tasks. Thus, the generalized motion
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generation results are shown in the right column of Fig. 3. In
the 2-dim example, bimanual motions are required to meet
at a new position, (5, 5). In the 3-dim example, this new
meeting point is set to (5, 8, 5). The generated motions with
learned coordination are shown in red and blue, while we
also provide a comparison with generated motions without
coordination (in light red and blue). By comparison, we find
that just regarding bimanual arms as a simple combination
of two single arms is insufficient for bimanual tasks. It is
necessary to parameterize coordination relationship no matter
in a leader-follower or synergistic manner; this is the key to
achieving bimanual tasks mostly.

D. Real robot experiment

We adopt the self-designed humanoid CURI robot for real
robot experiments to perform the bimanual motions. Since
this work focuses on learning and generalizing coordinated
motion, task parameters such as start and end points and
object poses are obtained through the Optitrack system. As
shown in Fig. 4, we paste four markers on the box to be
transported and the box as a destination to facilitate obtaining
their poses in the world coordinate system. Meanwhile, four
fixed connected markers are also on the back of the CURI
robot. The coordinated human hand motions are learned by
relative parameterization. Then we use this parameterized
coordination model to generate motions that adapt to new
object poses and destinations. It is worth mentioning that,
unlike the observation frames used in the synthetic data, we
set five observation frames to transport this palletizing task,
namely from start points, end points, center poses of the
transport box, and the center pose of the destination box. This
allows the robot to move from an initial pose with its arms
outstretched to the sides of the box, carry the box and place
it in the target position, and then release the box. Besides,
the result of the pouring example can be found in Fig. 2. A
self-designed impedance controller supports the execution of
the CURI robot, and the trajectories are converted to joint
space commands via its inverse kinematics model.

IV. DISCUSSION

This work still has some limitations. First, the proposed
relative parameterization method is only applied to trajec-
tories in Cartesian space without considering joint space
coordination. Learning joint-space bimanual coordination or
even whole-body coordination from human demonstrations
remains an open problem. Some previous work can be found
in [14]. Besides, the method based on the Gaussian mixture
model will take a certain amount of time when processing
high-frequency sampling demonstration data, which might
affect the actual real-time usage. Some improvements using
Tensor instead of large sparse matrices can be found in [15].

V. CONCLUSION

In this work, we propose a method for parameterizing co-
ordination in bimanual tasks by probabilistic relative motion
relationship of bimanual arms from human demonstration
and guiding the robot motion generation in new situations.

By embedding relative motion relationship, bimanual mo-
tions can be generated in a leader-follower manner and
also synergistic manner. We provide a detailed formula-
tion derivation process and demonstrate the effectiveness of
the proposed method in coordination learning with some
synthetic data with prominent coordination characteristics.
We also deploy the method on a real humanoid robot to
perform coordination motions to show its generalization in
new situations. We believe that this easy-to-use bimanual
LfD method can be used as a robust demonstration data
augmentation method for training robot large manipulation
model [16], and we will do research to show this potential
in the future.
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